CuBiO synthesized by thermolysis of a new Bi(III)-Cu(II) oxalate coordination compound, namely BiCu(CO)·0.25HO, was tested through its integration within carbon nanofiber paste electrode, namely CuBi/carbon nanofiber (CNF), for the electrochemical detection of amoxicillin (AMX) in the aqueous solution. Thermal analysis and IR spectroscopy were used to characterize a CuBiO precursor to optimize the synthesis conditions. The copper bismuth oxide obtained after a heating treatment of the precursor at 700 °C/1 h was investigated by an X-ray diffraction and scanning electron microscopy. The electrochemical behavior of CuBi/CNF in comparison with CNF paste electrode showed the electrocatalytic activity of CuBiO toward amoxicillin detection. Two potential detections, with one at the potential value of +0.540 V/saturated calomel electrode (SCE) and the other at the potential value of -1.000 V/SCE, were identified by cyclic voltammetry, which were exploited to develop the enhanced voltammetric and/or amperometric detection protocols. Better electroanalytical performance for AMX detection was achieved for CuBi/CNF using differential-pulsed and square-wave voltammetries than others reported in the literature. Very nice results obtained through anodic and cathodic currents recorded at +0.750 V/SCE and -1.000 V/SCE in the same time period using a pseudo multiple-pulsed amperometry technique showed the great potential of the CuBi/CNF paste electrode for practical applications in amoxicillin detection in aqueous solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001249PMC
http://dx.doi.org/10.3390/nano11030740DOI Listing

Publication Analysis

Top Keywords

paste electrode
12
detection amoxicillin
8
aqueous solutions
8
amoxicillin detection
8
-1000 v/sce
8
detection
6
cubio
4
cubio synthesis
4
synthesis characterization
4
characterization application
4

Similar Publications

Electrochemiluminescence (ECL) is nowadays a powerful technique widely used in biosensing and imaging, offering high sensitivity and specificity for detecting and mapping biomolecules. Screen-printed electrodes (SPEs) offer a versatile and cost-effective platform for ECL applications due to their ease of fabrication, disposability, and suitability for large-scale production. This research introduces a novel method for improving the ECL characteristics of screen-printed carbon electrodes (SPCEs) through the application of CO laser treatment following fabrication.

View Article and Find Full Text PDF

Aminated carbon nanotubes, CNT, were covalently modified with glutardialdehyde (GDI) and the redox dye Azure to form a new electrode material CNT-GDI-Azure (CGA). The nanocomposite of CGA and polysaccharide chitosan was used for the anodic determination of NADH. Compared to conventional carbon and metal electrodes, the CGA electrode drastically lowered the overpotential for NADH oxidation (by > 0.

View Article and Find Full Text PDF

In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].

View Article and Find Full Text PDF

Laminating a free-standing carbon electrode film onto perovskite film is a promising method for fabricating HTM (hole transport material)-free carbon electrode perovskite solar cells (c-PSCs), offering more flexibility by decoupling the processes of carbon electrode and perovskite layer formation. However, the power conversion efficiency (PCE) of laminated HTM-free c-PSCs (<16.5%) remains lower compared to c-PSCs with printed carbon pastes (>20%), primarily due to poor interfacial contact between the perovskite and carbon layers.

View Article and Find Full Text PDF

The detection of 4-chloro-2-methylphenoxyacetic acid (CMPA) herbicide is crucial due to the potential health risks linked to exposure through drinking water, air, and food, which may adversely affect liver and kidney functions. To address this environmental concern and promote sustainable agriculture, a sensitive carbon paste sensor incorporating a composite material was developed. The composite sensor is based on porous cobalt-1,4-benzenedicarboxylate metal-organic framework and exfoliated montmorillonite nanolayers (Co-OF/MMt).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!