Osteoarthritis (OA) is a common degenerative disease that results in joint inflammation as well as pain and stiffness. A previous study has reported that (CO) extract inhibits oxidant activities and oxidative stress in RAW 264.7 cells. In the present study, we isolated bioactive compound(s) by fractionating the CO extract to elucidate its antiosteoarthritic effects. A single bioactive component, morroniside, was identified as a potential candidate. The CO extract and morroniside exhibited antiosteoarthritic effects by downregulating factors associated with cartilage degradation, including cyclooxygenase-2 (), matrix metalloproteinase 3 (), and matrix metalloproteinase 13 (), in interleukin-1 beta (IL-1β)-induced chondrocytes. Furthermore, morroniside prevented prostaglandin E2 (PGE2) and collagenase secretion in IL-1β-induced chondrocytes. In the destabilization of the medial meniscus (DMM)-induced mouse osteoarthritic model, morroniside administration attenuated cartilage destruction by decreasing expression of inflammatory mediators, such as Cox-2, Mmp3, and Mmp13, in the articular cartilage. Transverse microcomputed tomography analysis revealed that morroniside reduced DMM-induced sclerosis in the subchondral bone plate. These findings suggest that morroniside may be a potential protective bioactive compound against OA pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999654PMC
http://dx.doi.org/10.3390/ijms22062987DOI Listing

Publication Analysis

Top Keywords

destabilization medial
8
antiosteoarthritic effects
8
matrix metalloproteinase
8
il-1β-induced chondrocytes
8
morroniside
6
antiosteoarthritic morroniside
4
morroniside chondrocyte
4
chondrocyte inflammation
4
inflammation destabilization
4
medial meniscus-induced
4

Similar Publications

Background: Osteoarthritis (OA) is the most prevalent joint disorder globally, causing a substantial and increasing socioeconomic burden. Kojic acid (KA) presented potential biological roles in regulating inflammation and autophagy, which was implicated in OA progression. However, its role in chondrocytes and OA has not been reported.

View Article and Find Full Text PDF

Tears of the posterior medial meniscus root (PMMR) are common in older patients and reportedly contribute to rapid joint degeneration over time. Recognition of these tear types and the appropriate diagnosis through clinical exam and diagnostic imaging have improved significantly in recent years, as have surgical techniques to address them. Standardized post-operative rehabilitation protocols specific to PMMR repair have not been established or well understood in the scientific literature.

View Article and Find Full Text PDF

Background: Hypoxia can affect the occurrence and development of inflammation in humans, but its effects on the disease progression of osteoarthritis (OA) remain unclear. Synovial macrophages play an essential role in the progression of arthritis. Specifically, the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) in macrophages induces the secretion of a series of inflammatory factors, accelerating the progression of OA.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a common age-related disease that is correlated with a high number of senescent chondrocytes in joint tissues. Heterogeneous nuclear ribonucleoprotein D (HNRNPD) is an RNA-binding protein whose expression imbalance is associated with cell senescence, but the role of HNRNPD in the occurrence and development of OA has not been reported. In this study, HNRNPD was found to be associated with the chondrocyte senescence process.

View Article and Find Full Text PDF

Transient receptor potential channel 1 (TRPC1) is a widely expressed mechanosensitive ion channel located within the endoplasmic reticulum membrane, crucial for refilling depleted internal calcium stores during activation of calcium-dependent signaling pathways. Here, we demonstrate that TRPC1 activity is protective within cartilage homeostasis in the prevention of cellular senescence associated cartilage breakdown during mechanical and inflammatory challenge. We reveal that TRPC1 loss is associated with early stages of osteoarthritis (OA) and plays a non-redundant role in calcium signaling in chondrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!