Tuning the Covering on Gold Surfaces by Grafting Amino-Aryl Films Functionalized with Fe(II) Phthalocyanine: Performance on the Electrocatalysis of Oxygen Reduction.

Molecules

Universidad de Santiago de Chile (USACH), Faculty of Chemistry and Biology, Department of Chemistry of the Materials, Soft Matter Research and Technology Center, SMAT-C. Av. Libertador B. O'Higgins 3363, Box 40, Correo 33, Santiago 9170022, Chile.

Published: March 2021

Current selective modification methods, coupled with functionalization through organic or inorganic molecules, are crucial for designing and constructing custom-made molecular materials that act as electroactive interfaces. A versatile method for derivatizing surfaces is through an aryl diazonium salt reduction reaction (DSRR). A prominent feature of this strategy is that it can be carried out on various materials. Using the DSRR, we modified gold surface electrodes with 4-aminebenzene from 4-nitrobenzenediazonium tetrafluoroborate (NBTF), regulating the deposited mass of the aryl film to achieve covering control on the electrode surface. We got different degrees of covering: monolayer, intermediate, and multilayer. Afterwards, the ArNO end groups were electrochemically reduced to ArNH and functionalized with Fe(II)-Phthalocyanine to study the catalytic performance for the oxygen reduction reaction (ORR). The thickness of the electrode covering determines its response in front of ORR. Interestingly, the experimental results showed that an intermediate covering film presents a better electrocatalytic response for ORR, driving the reaction by a four-electron pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998582PMC
http://dx.doi.org/10.3390/molecules26061631DOI Listing

Publication Analysis

Top Keywords

oxygen reduction
8
reduction reaction
8
tuning covering
4
covering gold
4
gold surfaces
4
surfaces grafting
4
grafting amino-aryl
4
amino-aryl films
4
films functionalized
4
functionalized feii
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!