Red yeast rice has been used to produce alcoholic beverages and various fermented foods in China and Korea since ancient times; it has also been used to produce (Okinawan-style fermented tofu) in Japan since the 18th century. Recently, monacolin K (lovastatin) which has cholesterol-lowering effects, was found in some strains of fungi. Since statins have been used world-wide as a cholesterol-lowering agent, processed foods containing natural statins are drawing attention as materials for primary prevention of life-style related diseases. In recent years, large-scale commercial production of red yeast rice using traditional solid-state fermentation has become possible, and various useful materials, including a variety of monascus pigments (polyketides) that spread as natural pigments, in addition to statins, are produced in the fermentation process. Red yeast rice has a lot of potential as a medicinal food. In this paper, we describe the history of red yeast rice as food, especially in Japan and East Asia, its production methods, use, and the ingredients with pharmacological activity. We then review evidence of the beneficial effects of red yeast rice in improving lipid metabolism and the circulatory system and its safety as a functional food.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001704 | PMC |
http://dx.doi.org/10.3390/molecules26061619 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Graduate Program in Bioscience Technologies, Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brazil.
Efficient degradation of lignocellulosic biomass is key for the production of value-added products, contributing to sustainable and renewable solutions. This study employs a two-step approach to evaluate lignocellulolytic enzymes of Ceratocystis paradoxa, Colletotrichum falcatum, and Sporisorium scitamineum. First, an in silico genomic analysis was conducted to predict the potential enzyme groups produced by these fungi.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Agriculture, Shanxi Agricultural University, 030031 Taiyuan, Shanxi, PR China.
The protracted and immoderate utilization of chemical fertilizers has been detrimental to the composition of fungi in the soil and quality of crops. To ameliorate the adverse effects, a 6-year positioning experiment was undertaken to investigate the impact of substituting 0 % (CF), 25 % (M25), 50 % (M50), 75 % (M75), and 100 % (M100) of 225 kg ha chemical fertilizer nitrogen with manure nitrogen on both soil fungi and maize quality. This study showed that the expansion of Aspergillus heterocaryoticus, Xerochrysium dermatitidis, and Aspergillus penicillioides contributed to heightened levels of amylose and soluble sugars.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.
Background: This study investigated the selenium-binding capacity of the biomass of two yeast strains, American Type Culture Collection (ATCC) 7090 and CCY 20-2-26.
Methods: The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of NaSeO at concentrations ranging from 0 to 40 mg Se/L.
Viruses
December 2024
School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów 50a, 70-311 Szczecin, Poland.
Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!