A series of thiosemicarbazone derivatives was prepared and their anti-tumor activity in vitro was tested. The X-ray investigation performed for compounds T2, T3 and T5 confirmed the synthesis pathway and assumed molecular structures of analyzed thiosemicarbazones. The conformational preferences of the thiosemicarbazone system were characterized using theoretical calculations by AM1 method. Selected compounds were converted into complexes of Cu (II) ions. The effect of complexing on anti-tumor activity has been investigated. The copper(II) complexes, with Schiff bases T1, T10, T12, T13, and T16 have been synthesized and characterized by chemical and elemental analysis, FTIR spectroscopy and TGA method. Thermal properties of coordination compounds were studied using TG-DTG techniques under dry air atmosphere. G361, A375, and SK-MEL-28 human melanoma cells and BJ human normal fibroblast cells were treated with tested compounds and their cytotoxicity was evaluated with MTT test. The compounds with the most promising anti-tumour activity were then selected and their cytotoxicity was verified with cell cycle analysis and apoptosis/necrosis detection. Additionally, DNA damages in the form of a basic sites presence and the expression of oxidative stress and DNA damage response genes were evaluated. The obtained results indicate that complexation of thiosemicarbazone derivatives with Cu (II) ions improves their antitumor activity against melanoma cells. The observed cytotoxic effect is associated with DNA damage and G2/M phase of cell cycle arrest as well as disorders of the antioxidant enzymes expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002893 | PMC |
http://dx.doi.org/10.3390/ijms22063104 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India.
The idea of coordinating biologically active ligand systems to metal centers to exploit their synergistic effects has gained momentum. Therefore, in this report, three Ru complexes - of morpholine-derived thiosemicarbazone ligands have been prepared and characterized by spectroscopy and HRMS along with the structure of through a single-crystal X-ray diffraction study. The solution stability of - was tested using conventional techniques such as UV-vis and HRMS.
View Article and Find Full Text PDFMolecules
December 2024
Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, 90-151 Lodz, Poland.
This paper presents the synthesis and characterization of new thiosemicarbazone derivatives with potential applications as antibacterial, antioxidant and anticancer agents. Six thiosemicarbazone derivatives (L-L5) were synthesized by reacting an appropriate thiosemicarbazide derivative with 2-pyridinecarboxaldehyde. The structures of the obtained compounds were confirmed using mass spectrometry, infrared spectroscopy, and NMR spectroscopy.
View Article and Find Full Text PDFBioorg Chem
February 2025
Institute of Chemical Sciences, Bahauddin Zakariya University, 60800 Multan, Pakistan. Electronic address:
A series of novel phenyl naphthalene-2-sulfonate-based thiosemicarbazones (5a-v) were synthesized and evaluated for their inhibitory activity against human carbonic anhydrases I and II (hCA I and hCA II). Compounds 5d and 5p demonstrated the highest inhibitory potency, with IC values of 4.32 ± 0.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Chemistry, Illinois State University, Normal, IL 61790, USA.
Sulfonamide drugs were the original class of antibiotics, demonstrating the antibacterial potential of dithiocarbazate and thiosemicarbazone Schiff base derivatives of syringaldehyde and 4-hydroxy-3,5-dimethylbenzaldehyde. We synthesized unique Schiff bases via the condensation of the aldehydes with hydrazine derivatives, which allows for the easy synthesis of several related compounds. These Schiff base derivatives were tested for antileishmanial properties against the parasitic protozoan .
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Dipartimento di Scienze Biomediche Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy.
Four years after the COVID-19 pandemic, a very limited number of drugs has been marketed; thus, the search for new medications still represents a compelling need. In our previous work on antiviral, antiparasitic, and antiproliferative agents, we described several compounds (- and -) structurally related to clofazimine, chloroquine, and benzimidazole derivatives. Thus, we deemed it worthwhile to test them against the replication of SARS-CoV-2, together with a few other compounds (, and -), which showed some analogy to miscellaneous anti-coronavirus agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!