(1) Background: The purpose of this study was to examine the symptoms of low energy availability (LEA) and risk of relative energy deficiency in sport (RED-S) symptoms in para-athletes using a multi-parameter approach. (2) Methods: National level para-athletes ( = 9 males, = 9 females) completed 7-day food and activity logs to quantify energy availability (EA), the LEA in Females Questionnaire (LEAF-Q), dual energy X-ray absorptiometry (DXA) scans to assess bone mineral density (BMD), and hormonal blood spot testing. (3) Results: Based on EA calculations, no athlete was at risk for LEA (females < 30 kcal·kg FFM·day; and males < 25 kcal·kg FFM·day; thresholds for able-bodied (AB) subjects). Overall, 78% of females were "at risk" for LEA using the LEAF-Q, and 67% reported birth control use, with three of these participants reporting menstrual dysfunction. BMD was clinically low in the hip (<-2 z-score) for 56% of female and 25% of male athletes (4) Conclusions: Based on calculated EA, the risk for RED-S appears to be low, but hormonal outcomes suggest that RED-S risk is high in this para-athlete population. This considerable discrepancy in various EA and RED-S assessment tools suggests the need for further investigation to determine the true prevalence of RED-S in para-athlete populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002867PMC
http://dx.doi.org/10.3390/nu13030979DOI Listing

Publication Analysis

Top Keywords

energy availability
12
low energy
8
availability lea
8
lea females
8
kcal·kg ffm·day
8
energy
5
risk low
4
availability national
4
national international
4
international level
4

Similar Publications

The Atlantic wolffish (Anarhichas lupus) is a cold-water fish with potential for aquaculture diversification. To unveil the mechanisms underlying the compromised growth in Atlantic wolffish when reared at higher temperatures, we investigated the relationship between temperature, growth rate, aerobic capacity, stress biomarkers, and gut barrier function. Juveniles acclimated to 10°C were maintained at 10°C (control) or exposed to 15°C for either 24 h (acute exposure) or 50 days (chronic exposure).

View Article and Find Full Text PDF

Plastic pollution and marine mussels: Unravelling disparities in research efforts, biological effects and influences of global warming.

Sci Total Environ

December 2024

Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa.

The ever-growing contamination of the environment by plastics is a major scientific and societal concern. Specifically, the study of microplastics (1 μm to 5 mm), nanoplastics (< 1 μm), and their leachates is a critical research area as they have the potential to cause detrimental effects, especially when they impact key ecological species. Marine mussels, as ecosystem engineers and filter feeders, are particularly vulnerable to this type of pollution.

View Article and Find Full Text PDF

Effects of compound immobilized bacteria on remediation and bacterial community of PAHs-contaminated soil.

J Hazard Mater

December 2024

MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.

Immobilized microorganism technology is expected to enhance microbial activity and stability and is considered an effective technique for removing soil polycyclic aromatic hydrocarbons (PAHs). However, there are limited high-efficiency and stable bacterial preparations available. In this study, alkali-modified biochar (Na@CBC700) was used as the adsorption carrier, sodium alginate (SA) and polyvinyl alcohol (PVA) as embedding agents, and CaCl as the cross-linking agent to prepare immobilized Acinetobacter (CoIMB) through a composite immobilization method.

View Article and Find Full Text PDF

The removal of selenite (Se(IV)) and cadmium (Cd(II)) from low-carbon wastewater presents significant challenges. However, the addition of external organic carbon sources is limited in application due to the high cost and potential for secondary pollution. This study introduced a "hibernation-like microbial survival strategy", enabling efficient removal of Se(IV) and Cd(II) in sulfur autotrophic reactor, with S acting as the electron donor.

View Article and Find Full Text PDF

Cathode-mediated electrochemical conversion of phenol to benzoquinone in wastewater: High yield rate and low energy consumption.

Water Res

December 2024

Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China. Electronic address:

Selective conversion of organic pollutants in wastewater into value-added chemicals is a promising strategy for sustainable water management. Electrochemical processes offer attractive features of precise control over reaction pathway to achieve desired products, however, the traditional anode-mediated processes still face challenges of over-oxidation by the inevitably formed of hydroxyl radical (HO). Herein, we proposed a new cathode-mediated approach for selective conversion of phenol to p-benzoquinone (p-BQ) through peroxymonosulfate (PMS) activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!