We herein report the development and evaluation of a novel HER2-targeting antibody-drug conjugate (ADC) based on the topoisomerase I inhibitor payload exatecan, using our hydrophilic monodisperse polysarcosine (PSAR) drug-linker platform (PSARlink). In vitro and in vivo experiments were conducted in breast and gastric cancer models to characterize this original ADC and gain insight about the drug-linker structure-activity relationship. The inclusion of the PSAR hydrophobicity masking entity efficiently reduced the overall hydrophobicity of the conjugate and yielded an ADC sharing the same pharmacokinetic profile as the unconjugated antibody despite the high drug-load of the camptothecin-derived payload (drug-antibody ratio of 8). Tra-Exa-PSAR10 demonstrated strong anti-tumor activity at 1 mg/kg in an NCI-N87 xenograft model, outperforming the FDA-approved ADC DS-8201a (Enhertu), while being well tolerated in mice at a dose of 100 mg/kg. In vitro experiments showed that this exatecan-based ADC demonstrated higher bystander killing effect than DS-8201a and overcame resistance to T-DM1 (Kadcyla) in preclinical HER2+ breast and esophageal models, suggesting potential activity in heterogeneous and resistant tumors. In summary, the polysarcosine-based hydrophobicity masking approach allowsfor the generation of highly conjugated exatecan-based ADCs having excellent physicochemical properties, an improved pharmacokinetic profile, and potent in vivo anti-tumor activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000490 | PMC |
http://dx.doi.org/10.3390/ph14030247 | DOI Listing |
J Control Release
December 2024
School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom. Electronic address:
Xenobiotica
August 2024
Clinical Pharmacology and Translational Science, Pfizer Inc, Bothell, Washington, USA.
Native liquid chromatography mass spectrometry (LC-MS) is a commonly used approach for intact analysis of inter-chain cysteine conjugated antibody-drug conjugates (ADCs). Coupling native LC-MS with affinity capture provides a platform for intact ADC analysis from samples and characterisation of individual drug load species, specifically the impact of drug linker deconjugation, hydrolysis, and differential clearance in a biological system.This manuscript describes data generated from native LC-MS analysis of ADCs from human plasma, both incubations and clinical samples.
View Article and Find Full Text PDFAnal Methods
June 2024
AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, USA.
Pharmaceuticals (Basel)
March 2021
Mablink Bioscience, 69 rue de la république, 69002 Lyon, France.
We herein report the development and evaluation of a novel HER2-targeting antibody-drug conjugate (ADC) based on the topoisomerase I inhibitor payload exatecan, using our hydrophilic monodisperse polysarcosine (PSAR) drug-linker platform (PSARlink). In vitro and in vivo experiments were conducted in breast and gastric cancer models to characterize this original ADC and gain insight about the drug-linker structure-activity relationship. The inclusion of the PSAR hydrophobicity masking entity efficiently reduced the overall hydrophobicity of the conjugate and yielded an ADC sharing the same pharmacokinetic profile as the unconjugated antibody despite the high drug-load of the camptothecin-derived payload (drug-antibody ratio of 8).
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
March 2020
Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, CA 92121, USA. Electronic address:
Antibody-drug conjugates (ADCs) have become major biopharmaceutical drugs in the field of oncology. Traditional ADCs possess a stochastic distribution of cytotoxic payloads linked to several different amino acid residues of the antibody. This heterogeneous nature of stochastic ADCs results in a complex conjugation-site characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!