Twenty-one fungal strains were isolated from dye-contaminated soil; out of them, two fungal strains A2 and G2-1 showed the highest decolorization capacity for real textile effluent and were, hence, identified as and based on morphological and molecular methods. The highest decolorization percentage of 78.12 ± 2.1% was attained in the biotreatment with fungal consortium followed by and separately with removal percentages of 54.68 ± 1.2% and 52.41 ± 1.0%, respectively. Additionally, ultraviolet-visible spectroscopy of the treated effluent showed that a maximum peak () of 415 nm was reduced as compared with the control. The indicators of wastewater treatment efficacy, namely total dissolved solids, total suspended solids, conductivity, biological oxygen demand, and chemical oxygen demand with removal percentages of 78.2, 78.4, 58.2, 78.1, and 77.6%, respectively, demonstrated a considerable decrease in values due to fungal consortium treatment. The reduction in peak and mass area along with the appearance of new peaks in GC-MS confirms a successful biodegradation process. The toxicity of treated textile effluents on the seed germination of was decreased as compared with the control. The shoot length after irrigation with effluents treated by the fungal consortium was 15.12 ± 1.01 cm as compared with that treated by tap-water, which was 17.8 ± 0.7 cm. Finally, we recommended the decrease of excessive uses of synthetic dyes and utilized biological approaches for the treatment of real textile effluents to reuse in irrigation of uneaten plants especially with water scarcity worldwide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001397PMC
http://dx.doi.org/10.3390/jof7030193DOI Listing

Publication Analysis

Top Keywords

real textile
12
fungal consortium
12
treatment real
8
textile effluent
8
fungal strains
8
highest decolorization
8
removal percentages
8
compared control
8
oxygen demand
8
textile effluents
8

Similar Publications

In Situ Monitoring of Mechanofluorescence in Polymeric Nanofibers.

Macromol Rapid Commun

December 2024

Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy.

Mechanofluorescent polymers represent a promising class of materials exhibiting fluorescence changes in response to mechanical stimuli. One approach to fabricating these polymers involves incorporating aggregachromic dyes, whose emission properties are governed by the intermolecular distance, which can, in turn, be readily altered by microstructural changes in the surrounding polymer matrix during mechanical deformation. In this study, a mechanofluorescent additive featuring excimer-forming oligo(p-phenylene vinylene) dyes (tOPV) is incorporated into electrospun polyurethane fibers, producing mats of fibers with diameters ranging from 300 to 700 nm.

View Article and Find Full Text PDF

Background: The development of wearable solutions for tracking upper limb motion has gained research interest over the past decade. This paper provides a systematic review of related research on the type, feasibility, signal processing techniques, and feedback of wearable systems for tracking upper limb motion, mostly in rehabilitation applications, to understand and monitor human movement.

Objective: The aim of this article is to investigate how wearables are used to capture upper limb functions, especially related to clinical and rehabilitation applications.

View Article and Find Full Text PDF

BmE2F1 regulates endoreplication of silk gland cells in silkworm, Bombyx mori.

Int J Biol Macromol

December 2024

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Southwest University, Chongqing 400715, China. Electronic address:

Endoreplication is particularly important in the context of silk protein synthesis within the silk gland cells of silkworms. Our previous research indicated that the BmE2F1 enhances the silk yield of silkworm cocoons, but the underlying molecular mechanism remains elusive. In this study, we employed RNA-sequencing to dissect the transcriptional profiles of silk glands in the wild-type Dazao silkworm strain and the overexpression (OE) silkworm strain with specific overexpression of the BmE2F1 gene in silk glands.

View Article and Find Full Text PDF

FabricSpotDefect: An annotated dataset for identifying spot defects in different fabric types.

Data Brief

December 2024

Center for Computational & Data Sciences, Independent University, Bangladesh, Block B, Bashundhara R/A, Dhaka 1229, Bangladesh.

The FabricSpotDefect dataset is, to the best of our knowledge, the first dataset specifically designed to accurately challenge computer vision in detecting fabric spots. There are a total of 1014 raw images and manually annotated 3288 different categories of spots. This dataset expands to 2300 augmented images after applying six categories of augmentation techniques like flipping, rotating, shearing, saturation adjustment, brightness adjustment, and noise addition.

View Article and Find Full Text PDF

The textile industry is one of the largest water consumers, and, as a result of its activity, it generates tons of wastewater. In this research, forward osmosis has been employed to tackle the critical need of treating textile wastewater. The HFFO2 membrane (Aquaporin) was used to process large volumes of real cotton dyeing wastewater, wool dyeing wastewater, and several types of textile end-of-pipe wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!