In this study, we investigated the effect of the addition of cellulose nanofiber (CNF) fillers on the performance of poly(lactic acid) (PLA). Modification of the hydroxyl group of cellulose to the acyl group by acid anhydrides changed the compatibility of the CNF with PLA. CNF was modified by acetic anhydride, propionic anhydride, and butyric anhydride to form surface-modified acetylated CNF (CNFa), propionylated CNF (CNFp), and butyrylated CNF (CNFb), respectively, to improve the compatibility with the PLA matrix. The effects of the different acid anhydrides were compared based on their rates of reaction in the acylation process. PLA with modified cellulose nanofiber fillers formed smoother surfaces with better transparency, mechanical, and wettability properties compared with the PLA/CNF composite film. The effects of CNFa, CNFp, and CNFb on the PLA matrix were compared, and it was found that CNFp was the best filler for PLA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002836 | PMC |
http://dx.doi.org/10.3390/nano11030753 | DOI Listing |
Materials (Basel)
December 2024
Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark.
Electrospinning of polymer material has gained a lot of interest in the past decades. Various methods of electrospinning have been applied for different applications, from needle electrospinning to needleless electrospinning. A relatively new variation of electrospinning, namely near-field electrospinning, has been used to generate well-defined patterns.
View Article and Find Full Text PDFFoods
December 2024
Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan s/n, Col. Residencial Colón, Toluca 50120, Estado de Mexico, Mexico.
This study explored the effect of incorporating cellulose and starch nanoparticles, obtained from the Willd plant, on the physical and chemical properties of starch-based films derived from the same plant. Additionally, the synergistic effect of combining the nanostructures was assessed. The nanocomposite biopolymer films were prepared by the casting method using 1 and 3 wt% concentrations of the nanostructures (CNCs: cellulose nanocrystals, CNFs: cellulose nanofibers, SNCs: starch nanocrystals), or their blend.
View Article and Find Full Text PDFFoods
December 2024
Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi'an 710119, China.
There is growing interest in the use of bio-based materials as viable alternatives to petrochemical-based packaging. However, the practical application of bio-based films is often hampered by their poor barrier and poor mechanical properties. In this context, cellulose nanofibers (CNFs) have attracted considerable attention owing to their exceptional biodegradability, high aspect ratio, and large surface area.
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore.
Hydrogel-based sensors have been widely studied for perceiving the environment. However, the simplest type of resistive sensors still lacks sensitivity to localized strain and other extractable data. Enhancing their sensitivity and expanding their functionality to perceive multiple stimuli simultaneously are highly beneficial yet require optimal material design and proper testing methods.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; China Advanced Flame Retardant Engineering Technology Research Center for Light Industry, Beijing 100048, China; Engineering laboratory for halogen-free flame retardants for polymer materials in the petroleum and chemical industry, Beijing 100048, China.
In this study, cellulose nanofibers (CNFs) were utilized as a synergistic agent, and combined with phytic acid arginine salt (PaArg) via blending and bonding. The effects of these different binding techniques of CNFs and PaArg on the flame retardant and mechanical properties of poly (butylene succinate) (PBS) were explored. The results indicated that both blended and bonded CNFs and PaArg enabled PBS composites to achieve a UL 94 V-0 rating, with the limiting oxygen index (LOI) value of the composite exceeding 28 %.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!