Cancer genomes evolve in a punctuated manner during tumor evolution. Abrupt genome restructuring at key steps in this evolution has been called "genome chaos." To answer whether widespread genome change is truly chaotic, this review (i) summarizes the limited number of cell and molecular systems that execute genome restructuring, (ii) describes the characteristic signatures of DNA changes that result from activity of those systems, and (iii) examines two cases where genome restructuring is determined to a significant degree by cell type or viral infection. The conclusion is that many restructured cancer genomes display sufficiently unchaotic signatures to identify the cellular systems responsible for major oncogenic transitions, thereby identifying possible targets for therapies to inhibit tumor progression to greater aggressiveness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002653 | PMC |
http://dx.doi.org/10.3390/cancers13061358 | DOI Listing |
J Dev Biol
December 2024
Comparative Histolab Padova, 35100 Padova, Italy.
The present, brief review paper summarizes previous studies on a new interpretation of the presence and absence of regeneration in invertebrates and vertebrates. Broad regeneration is considered exclusive of aquatic or amphibious animals with larval stages and metamorphosis, where also a patterning process is activated for whole-body regeneration or for epimorphosis. In contrast, terrestrial invertebrates and vertebrates can only repair injury or the loss of body parts through a variable "recovery healing" of tissues, regengrow or scarring.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Pharmacology, University of Cambridge, Cambridge, UK.
The mammary gland is a complex organ, host to a rich array of different cell types. As the only organ to complete its development in adulthood, it delicately balances both cell intrinsic and external signalling from hormones, growth factors and other stimulants. The gland can undergo vast proliferation, restructuring and functional maturation during pregnancy and undo these gross changes to a nearly identical resting state during involution.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Institute of Biological Chemistry, Academia Sinica, Taipei City, Taiwan.
Colon cancer development may be initiated by multiple factors, including chronic inflammation, genetic disposition, and gut dysbiosis. The loss of beneficial bacteria and increased abundance of detrimental microbes exacerbates disease progression. () is a human gut microbe, and its colon colonization is enhanced by a seaweed-supplemented diet.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130.
The nuclear pore complex (NPC), a multisubunit complex located within the nuclear envelope, regulates RNA export and the import and export of proteins. Here we address the role of the NPC in driving thermal stress-induced 3D genome repositioning of () genes in yeast. We found that two nuclear basket proteins, Mlp1 and Nup2, although dispensable for NPC integrity, are required for driving genes into coalesced chromatin clusters, consistent with their strong, heat shock-dependent recruitment to gene regulatory and coding regions.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
In this research study, we investigated four strains of that showed promising properties for plant growth. These strains were tested for their ability to mobilize phosphorus and produce ammonium, siderophores, and phytohormones. The strains exhibited different values of PGP traits; however, the analysis of the complete genomes failed to reveal any significant differences in known genes associated with the expression of beneficial plant traits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!