Berberine (BBR) has been reported to have potent anticancer activity and can increase the anticancer effects of chemotherapy drugs. The present study aims to investigate whether BBR and cisplatin (DDP) exert synergistic effects on the osteosarcoma (OS) MG-63 cell line. In the present study, MG-63 cells were treated with BBR and DDP alone or in combination. The effects of these therapeutics on cell viability, colony formation, migration, invasion, nuclear morphology, apoptosis, and the cell cycle, as well as their role in regulating the expression of proteins related to apoptosis, the cell cycle, and the mitogen-activated protein kinase (MAPK) pathway, were determined. The results demonstrated that BBR or DDP significantly inhibited the proliferation of MG-63 cells in a dose- and time-dependent manner. The combination treatment of BBR and DDP exerted a prominent inhibitory effect on proliferation and colony formation. Furthermore, the results showed that the combination treatment of BBR and DDP enhanced the inhibition of cell migration and invasion and reversed the changes in nuclear morphology. The results showed that the combination treatment of BBR and DDP induced apoptosis and cell cycle arrest in the G0/G1 phase. Mechanistically, the combination treatment of BBR and DDP inhibited the expression of MMP-2/9, Bcl-2, CyclinD1, and CDK4, enhanced the expression of Bax and regulated the activity of the MAPK pathway. Collectively, our data suggest that the combination therapy of BBR and DDP markedly enhanced OS cell death.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002572 | PMC |
http://dx.doi.org/10.3390/molecules26061666 | DOI Listing |
Molecules
March 2021
Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
Berberine (BBR) has been reported to have potent anticancer activity and can increase the anticancer effects of chemotherapy drugs. The present study aims to investigate whether BBR and cisplatin (DDP) exert synergistic effects on the osteosarcoma (OS) MG-63 cell line. In the present study, MG-63 cells were treated with BBR and DDP alone or in combination.
View Article and Find Full Text PDFBiol Res
July 2019
Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai, 200072, China.
Background: Berberine (BBR), a compound extracted from a variety of medicinal herbs, has been shown multiple pharmacological effects against cancer cells of different origins. Cisplatin (DDP) is known as an effective chemotherapeutic agent against cancer by inducing DNA damage and cell apoptosis. However, the effect of the combined used of BBR and DDP on cell necroptosis in ovarian cancer has not been reported.
View Article and Find Full Text PDFBiochem Pharmacol
May 2007
Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, VA 23284, United States.
[[trans-PtCl(NH(3))(2)](2)mu-(trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)-NH(2))(2))](4+) (BBR3464) is a cationic trinuclear platinum drug that is being evaluated in phase II clinical trials for treatment of lung and ovarian cancers. The structure and DNA binding profile of BBR3464 is different from drugs commonly used clinically. It is of great interest to evaluate the difference between the mechanisms of uptake employed by BBR3464 and cisplatin (c-DDP), as altered uptake may explain chemoresistance.
View Article and Find Full Text PDFJ Inorg Biochem
October 2004
Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, P.O. Box 842006, Richmond, VA 23284, USA.
The novel anticancer drug ([[trans-PtCl(NH(3))(2)](2)-mu-[trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2)]](NO(3))(4)) (BBR3464, 1,0,1/t,t,t, TPC) forms a 1,4-interstrand cross-linked adduct with the self-complementary DNA octamer 5'-d(ATG*TACAT)(2)-3', with the two platinum atoms coordinated in the major groove at N7 positions of guanines four base pairs apart on opposite DNA strands [Y. Qu, N.J.
View Article and Find Full Text PDFJ Biol Inorg Chem
January 2003
Department of Chemistry, Virginia Commonwealth University, PO Box 842006, Richmond, VA 23284, USA.
The novel phase II anticancer drug BBR3464 ([[ trans-PtCl(NH(3))(2)](2)- micro -[ trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2)]](NO(3))(4)) forms a 1,4-interstrand cross-link adduct with the self-complementary DNA octamer 5'-d(ATG*TACAT)(2)-3', with the two platinum atoms coordinated in the major groove at the N7 positions of guanines that are four base pairs apart on opposite DNA strands. The "central" tetraamine linker [ trans-H(2)N(CH(2))(6)NH(2)Pt(NH(3))(2)NH(2)(CH(2))(6)NH(2)] was located in or close to the minor groove. The adduct was characterized and analyzed by MS, UV and NMR spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!