Stroke is a very frequent disorder and one of the major leading causes of death and disability worldwide. Timely detection of stroke is essential in order to select and perform the correct treatment strategy. Thus, the use of an efficient imaging method for an early diagnosis of this syndrome could result in an increased survival's rate. Nowadays, microwave imaging (MWI) for brain stroke detection and classification has attracted growing interest due to its non-invasive and non-ionising properties. In this paper, we present a feasibility study with the goal of enhancing MWI for stroke detection using metasurface (MTS) loaded antennas. In particular, three MTS-enhanced antennas integrated in different brain scanners are presented. For the first two antennas, which operate in a coupling medium, we show experimental measurements on an elliptical brain-mimicking gel phantom including cylindrical targets representing the bleeding in haemorrhagic stroke (h-stroke) and the not oxygenated tissue in ischaemic stroke (i-stroke). The reconstructed images and transmission and reflection parameter plots show that the MTS loadings improve the performance of our imaging prototype. Specifically, the signal transmitted across our head model is indeed increased by several dB's over the desired frequency range of 0.5-2.0 GHz, and an improvement in the quality of the reconstructed images is shown when the MTS is incorporated in the system. We also present a detailed simulation study on the performance of a new printed square monopole antenna (PSMA) operating in air, enhanced by a MTS superstrate loading. In particular, our previous developed brain scanner operating in an infinite lossy matching medium is compared to two tomographic systems operating in air: an 8-PSMA system and an 8-MTS-enhanced PSMA system. Our results show that our MTS superstrate enhances the antennas' return loss by around 5 dB and increases the signal difference due to the presence of a blood-mimicking target up to 25 dB, which leads to more accurate reconstructions. In conclusion, MTS structures may be a significant hardware advancement towards the development of functional and ergonomic MWI scanners for stroke detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000944 | PMC |
http://dx.doi.org/10.3390/diagnostics11030424 | DOI Listing |
Brain Commun
May 2024
Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure.
View Article and Find Full Text PDFGastroenterol Res Pract
January 2025
Department of Hepatobiliary Disease, 900th Hospital of Joint Logistics Support Force, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
This study is aimed at investigating the role of key molecular elements involved in pyroptosis in liver injury caused by exertional heat stroke (EHS). We established a model of EHS-induced liver injury in Sprague-Dawley rats, with a control group (receiving no treatment) for comparison and 12 rats in each group. Alanine transaminase (ALT) and aspartate transaminase (AST) levels in the blood were detected.
View Article and Find Full Text PDFInterv Neuroradiol
January 2025
Department on Stroke Medicine and Vascular Neurology, North Bristol NHS Trust, Bristol, UK.
Background: Early identification and quantification of core infarct is of importance in stroke management for treatment selection, prognostication, and complication prediction. Non-contrast computed tomography (CT) (NCCT) remains the primary tool, but it suffers from limited sensitivity and inter-rater variability; CT perfusion is inconsistently available and commonly blighted by movement artefact. We assessed the performance of a standardised form of CT angiographic source imaging (CTASI) obtained through addition of a delayed phase at 40 seconds post-contrast injection (DP40) following fast-acquisition CT angiography.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
Analysis of the symmetry of the brain hemispheres at the level of individual structures and dominant tissue features has been the subject of research for many years in the context of improving the effectiveness of imaging methods for the diagnosis of brain tumor, stroke, and Alzheimer's disease, among others. One useful approach is to reliably determine the midline of the brain, which allows comparative analysis of the hemispheres and uncovers information on symmetry/asymmetry in the relevant planes of, for example, CT scans. Therefore, an effective method that is robust to various geometric deformations, artifacts, varying noise characteristics, and natural anatomical variability is sought.
View Article and Find Full Text PDFJ Neurointerv Surg
January 2025
Department of Neurology, UTHealth Houston McGovern Medical School, Houston, Texas, USA
Background: Automated machine learning (ML)-based large vessel occlusion (LVO) detection algorithms have been shown to improve in-hospital workflow metrics including door-to-groin time (DTG). The degree to which care team engagement and interaction are required for these benefits remains incompletely characterized.
Methods: This analysis was conducted as a pre-planned post-hoc analysis of a randomized prospective clinical trial.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!