The aging of bitumen is detrimental to the durability and service life of asphalt pavement. Previous studies found that bitumen was suspected to be aged by not only thermal oxidation but also solution immersion. This research aims to compare the effect of thermal-oxidative aging and salt solution aging on bitumen performance. For this purpose, a thin film oven test (TFOT) and pressure aging vessel aging (PAV) were selected as thermal-oxidative aging, and 10% NaCl aging and 10% CaCl aging were selected as salt solution aging. The morphology, oxygen content, physical properties, low-temperature properties, and high-temperature properties of bitumen were analysed by employing scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS), physical tests, a bending beam rheometer (BBR), and a dynamic shear rheometer (DSR). Test results show that both thermal-oxidative aging and salt solution aging had similar influencing trends in the oxygen content, physical, low-temperature, and high-temperature properties of bitumen but had different changes in morphology. The aging degrees caused by four kinds of aging methods were obtained based on the summed values of the absolute aging factor of all parameters: PAV > 10% NaCl > TFOT > 10% CaCl. The conclusions could provide a theoretical basis to establish a standard for the solution aging of bitumen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958964 | PMC |
http://dx.doi.org/10.3390/ma14051174 | DOI Listing |
J Prev Alzheimers Dis
January 2025
Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, BioClinicum, 171 64 Solna, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, 141 86 Stockholm, Sweden.
The advancement of disease-modifying treatments (DMTs) for Alzheimer's disease (AD), along with the approval of three amyloid-targeting therapies in the US and several other countries, represents a significant development in the treatment landscape, offering new hope for addressing this once untreatable chronic progressive disease. However, significant challenges persist that could impede the successful integration of this class of drugs into clinical practice. These challenges include determining patient eligibility, appropriate use of diagnostic tools and genetic testing in patient care pathways, effective detection and monitoring of side effects, and improving the healthcare system's readiness by engaging both primary care and dementia specialists.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Shandong Zhuoyue Precision Industry Group Co., Ltd., Jining 272114, China.
The 7000 series aluminum alloy represented by Al-Zn-Mg-Cu has good strength and toughness and is widely used in the aerospace field. However, its high Zn content results in poor corrosion resistance, limiting its application in other fields. In order to achieve the synergistic improvement of both strength and corrosion resistance, this study examines the response of strength, toughness and corrosion resistance of a high-strength aluminum alloy tail frame under aging conditions with external stresses of 135 MPa, 270 MPa and 450 MPa.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
C-Terminal cyclic imides are posttranslational modifications that can arise from spontaneous intramolecular cleavage of asparagine or glutamine residues resulting in a form of irreversible protein damage. These protein damage events are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN), indicating that these aging-related modifications may require cellular quality control mechanisms to prevent deleterious effects. However, the factors that determine protein or peptide susceptibility to C-terminal cyclic imide formation or their effect on protein stability have not been explored in detail.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Conservative Dentistry, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.
Objective: It is hypothesized that the way nano- and micro-hybrid polymer-based composites are structured and cured impacts the way they respond to aging.
Material And Methods: A polymer-ceramic interpenetrating network composite (Vita Enamic/VE), an industrially polymerized (Brillinat CriosST/BC), and an in situ light-cured composite with discrete inorganic fillers (Admira Fusion5/AF5) were selected. Specimens (308) were either cut from CAD/CAM blocks (VE/BC) or condensed and cured in white polyoxymethylene molds (AF5) and subjected to four different aging conditions ( = 22): (a) 24 h storage in distilled water at 37 °C; (b) 24 h storage in distilled water at 37 °C followed by thermal cycling for 10,000 cycles 5/55 °C (TC); (c) TC followed by storage in a 75% ethanol-water solution; and (d) TC followed by a 3-week demineralization/remineralization cycling.
Healthcare (Basel)
January 2025
Department of Physical Medicine and Rehabilitation, Loving Care Clinic, Seongnam-si 13524, Republic of Korea.
With South Korea's growing aging population, the demand for accessible rehabilitation solutions is increasing. Home-based robotic rehabilitation presents a feasible alternative to conventional in-clinic rehabilitation. This study explores the impact of the Rebless robotic rehabilitation device in a home-based setting for people with physical disabilities and their caregivers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!