Considering the probable health risks due to radioactivity input via drinking tea, the concentrations of Ra, Th,K and Cs radionuclides in the soil and the corresponding tea leaves of a large tea plantation were measured using high purity germanium (HPGe) γ-ray spectrometry. Different layers of soil and fresh tea leaf samples were collected from the Udalia Tea Estate (UTE) in the Fatickchari area of Chittagong, Bangladesh. The mean concentrations (in Bq/kg) of radionuclides in the studied soil samples were found to be 34 ± 9 to 45 ± 3 for Ra, 50 ± 13 to 63 ± 5 for Th, 245 ± 30 to 635 ± 35 for K and 3 ± 1 to 10 ± 1 for Cs, while the respective values in the corresponding tea leaf samples were 3.6 ± 0.7 to 5.7 ± 1.0, 2.4 ± 0.5 to 5.8 ± 0.9, 132 ± 25 to 258 ± 29 and <0.4. The mean transfer factors for Ra, Th and K from soil to tea leaves were calculated to be 0.12, 0.08 and 0.46, respectively, the complete range being 1.1 × 10 to 1.0, in accordance with IAEA values. Additionally, the most popularly consumed tea brands available in the Bangladeshi market were also analyzed and, with the exception of K, were found to have similar concentrations to the fresh tea leaves collected from the UTE. The committed effective dose via the consumption of tea was estimated to be low in comparison with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reference ingestion dose limit of 290 μSv/y. Current indicative tea consumption of 4 g/day/person shows an insignificant radiological risk to public health, while cumulative dietary exposures may not be entirely negligible, because the UNSCEAR reference dose limit is derived from total dietary exposures. This study suggests a periodic monitoring of radiation levels in tea leaves in seeking to ensure the safety of human health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066812 | PMC |
http://dx.doi.org/10.3390/life11040282 | DOI Listing |
Foods
January 2025
Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
The major components of tea leaves and their infusions were analyzed for various types of green tea available in Japan in 2022. Almost all the green teas used were from the first crop, known for their high amino acid content. The amino acids theanine and arginine in green tea have been shown to reduce stress.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China.
Color variation in plant leaves has a significant impact on their photosynthesis and plant growth. yellow-leaf mutants are ideal materials for studying the mechanisms of pigment synthesis and photosynthesis, but their mechanism of leaf variation is not clear. We systematically elucidated the intrinsic causes of leaf yellowing in the new variety 'Diecui Liuji' in terms of changes in its cell structure, pigment content, and transcript levels.
View Article and Find Full Text PDFFood Chem
January 2025
Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Green Cultivation and Processing Collaborative Innovation Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Rainy weather restricts the formation of high-quality Wuyi rock tea (WRT). Herein, an optimized withering process for rain-soaked leaves was developed using response surface methodology. Results showed that increasing the withering temperature, relative humidity, and withering time from 25 °C to 40 °C, 80 % to 97 %, and 3 to 6 h, respectively, effectively improved the sensory qualities of the optimized primary WRT (WRTO) prepared from rain-soaked leaves compared with those before optimization.
View Article and Find Full Text PDFSci Total Environ
January 2025
Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India. Electronic address:
More and more research is now being focused on the mercury contamination of remote mountain environments. This study aimed to explore the mountain soil of Tiger Hill, Darjeeling, through the lens of its mercury tolerant bacterial microbiome to characterize regional mercury pollution and isolate strains with mercury bioremediation potential. The soil bacteria isolated from the region displayed an extreme tolerance to mercury at previously unseen levels of up to 7 mg/mL.
View Article and Find Full Text PDFToxics
December 2024
State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China.
Hexavalent chromium (Cr(VI)) contamination in soil presents significant risks due to its high toxicity to both the environment and human health. Renewable, low-cost natural materials offer promising solutions for Cr(VI) reduction and soil remediation. However, the effects of unmodified tea leaves and tea-derived biochar on chromium-contaminated soils remain inadequately understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!