Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The swarm intelligence algorithm has become an important method to solve optimization problems because of its excellent self-organization, self-adaptation, and self-learning characteristics. However, when a traditional swarm intelligence algorithm faces high and complex multi-peak problems, population diversity is quickly lost, which leads to the premature convergence of the algorithm. In order to solve this problem, dimension entropy is proposed as a measure of population diversity, and a diversity control mechanism is proposed to guide the updating of the swarm intelligence algorithm. It maintains the diversity of the algorithm in the early stage and ensures the convergence of the algorithm in the later stage. Experimental results show that the performance of the improved algorithm is better than that of the original algorithm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065515 | PMC |
http://dx.doi.org/10.3390/e23040397 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!