A pharmacophore model for inhibitors of 's DNA Gyrase B was developed, using computer-aided drug design. Subsequently, docking studies showed that 2,5(6)-substituted benzimidazole derivatives are promising molecules, as they possess key hydrogen bond donor/acceptor groups for an efficient interaction with this bacterial target. Furthermore, 5(6)-bromo-2-(2-nitrophenyl)-1-benzimidazole, selected as a core molecule, was prepared on a multi-gram scale through condensation of 4-bromo-1,2-diaminobenzene with 2-nitrobenzaldehyde using a sustainable approach. The challenging functionalization of the 5(6)-position was carried out via palladium-catalyzed Suzuki-Miyaura and Buchwald-Hartwig amination cross-coupling reactions between -protected-5-bromo-2-nitrophenyl-benzimidazole and aryl boronic acids or sulfonylanilines, with yields up to 81%. The final designed molecules (2-(aminophen-2-yl)-5(6)-substituted-1-benzimidazoles), which encompass the appropriate functional groups in the 5(6)-position according to the pharmacophore model, were obtained in yields up to 91% after acid-mediated N-boc deprotection followed by Pd-catalyzed hydrogenation. These groups are predicted to favor interactions with DNA gyrase B residues Asn46, Asp73, and Asp173, aiming to promote an inhibitory effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958342PMC
http://dx.doi.org/10.3390/molecules26051326DOI Listing

Publication Analysis

Top Keywords

dna gyrase
12
pharmacophore model
8
synthesis computationally
4
computationally designed
4
designed 256-benzimidazole
4
256-benzimidazole derivatives
4
derivatives pd-catalyzed
4
pd-catalyzed reactions
4
reactions potential
4
potential dna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!