Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Evaluating mechanical and thermal characteristics of garment systems or their segments is important in an attempt to provide optimal or at least satisfying levels of comfort and safety, especially in the cold environment. The target groups of users may be athletes engaged in typical sports that are trained in the cold, as well as football players that play matches and train outdoors during the winter season. Previous studies indicated an option to substitute the inner layers of an intelligent garment with polyurethane inflated chambers (PIC) to increase and regulate thermal insulation. In this paper, the authors investigate the mechanical properties of polyurethane material with and without ultrasonic joints. Furthermore, they investigate the potential of designed PICs in terms of efficiency and interdependence of air pressure and heat resistance. The results indicated that an inflated PIC with four diagonal ultrasonic joints has the highest ability to maintain the optimal thermal properties of an intelligent clothing system. The influence of direction and number of ultrasonic joints on the mechanical properties of polyurethane material is confirmed, especially in terms of compression resilience and tensile energy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004170 | PMC |
http://dx.doi.org/10.3390/ma14061541 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!