The kidney plays a dominant role in the pathogenesis of essential hypertension, but the initial pathogenic events in the kidney leading to hypertension are not known. Exposure to mercury has been linked to many diseases including hypertension in epidemiological and experimental studies, so we studied the distribution and prevalence of mercury in the human kidney. Paraffin sections of kidneys were available from 129 people ranging in age from 1 to 104 years who had forensic/coronial autopsies. One individual had injected himself with metallic mercury, the other 128 were from varied clinicopathological backgrounds without known exposure to mercury. Sections were stained for inorganic mercury using autometallography. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used on six samples to confirm the presence of autometallography-detected mercury and to look for other toxic metals. In the 128 people without known mercury exposure, mercury was found in: (1) proximal tubules of the cortex and Henle thin loops of the medulla, in 25% of kidneys (and also in the man who injected himself with mercury), (2) proximal tubules only in 16% of kidneys, and (3) Henle thin loops only in 23% of kidneys. The age-related proportion of people who had any mercury in their kidney was 0% at 1-20 years, 66% at 21-40 years, 77% at 41-60 years, 84% at 61-80 years, and 64% at 81-104 years. LA-ICP-MS confirmed the presence of mercury in samples staining with autometallography and showed cadmium, lead, iron, nickel, and silver in some kidneys. In conclusion, mercury is found commonly in the adult human kidney, where it appears to accumulate in proximal tubules and Henle thin loops until an advanced age. Dysfunctions of both these cortical and medullary regions have been implicated in the pathogenesis of essential hypertension, so these findings suggest that further studies of the effects of mercury on blood pressure are warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004013 | PMC |
http://dx.doi.org/10.3390/toxics9030067 | DOI Listing |
Crit Rev Anal Chem
January 2025
Department of Chemistry, University of Delhi, New Delhi, India.
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Public Health Department, School of Medicine, Universidad Industrial de Santander, Bucaramanga, Colombia.
The "La Esperanza" native mercury mine in Aranzazu, (Caldas, Colombia) was active from 1948 until 1975. Before the final closure of the mine, the company began using dimercaprol (BAL, British Anti-Lewisite) and penicillamine for the treatment of hydrargyrism among workers. Mercury poisoning among miners was frequent due to precarious working conditions, inadequate technology, difficult terrain, and the high toxicity of native mercury within the mine.
View Article and Find Full Text PDFSci Total Environ
January 2025
ECOMARE, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.
Within the UN Decade on Ecosystem Restoration (2021-2030) framework, a Nature-based Solution (NbS) using Zostera noltei transplants was tested to restore a historically contaminated intertidal area. In-situ transplantation relied on patches of seagrass and sediment from a Donor meadow and its evolution was monitored for two years. The evaluation of the transplant success encompassed the seagrass coverage area, seagrass biomass, tissue mercury (Hg) accumulation, and photosynthetic efficiency.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Savannah River National Laboratory, Aiken, SC, USA.
Liquid low-level radioactive waste at the Savannah River Site contains several species of mercury, including inorganic, elemental, and methylmercury. This waste is solidified and stabilized in a cementitious waste form referred to as saltstone. Soluble mercury is stabilized as β-cinnabar, HgS as the result of reaction between the mercury and sulfur present in blast furnace slag, one of the cementitious reagents.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China. Electronic address:
As a heavy metal contaminant, mercury ion (Hg) has caused great harm to environment and life. Mercury ions will migrate and transform in the environment and eventually accumulate in the human body, thus causing human poisoning. Therefore, it is of great significance to detect Hg in the environment and living bodies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!