Searching the Dark Genome for Alzheimer's Disease Risk Variants.

Brain Sci

Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Wales CF24 4HQ, UK.

Published: March 2021

Sporadic Alzheimer's disease (AD) is a complex genetic disease, and the leading cause of dementia worldwide. Over the past 3 decades, extensive pioneering research has discovered more than 70 common and rare genetic risk variants. These discoveries have contributed massively to our understanding of the pathogenesis of AD but approximately half of the heritability for AD remains unaccounted for. There are regions of the genome that are not assayed by mainstream genotype and sequencing technology. These regions, known as the Dark Genome, often harbour large structural DNA variants that are likely relevant to disease risk. Here, we describe the dark genome and review current technological and bioinformatics advances that will enable researchers to shed light on these hidden regions of the genome. We highlight the potential importance of the hidden genome in complex disease and how these strategies will assist in identifying the missing heritability of AD. Identification of novel protein-coding structural variation that increases risk of AD will open new avenues for translational research and new drug targets that have the potential for clinical benefit to delay or even prevent clinical symptoms of disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999247PMC
http://dx.doi.org/10.3390/brainsci11030332DOI Listing

Publication Analysis

Top Keywords

dark genome
12
alzheimer's disease
8
disease risk
8
risk variants
8
regions genome
8
genome
6
disease
6
searching dark
4
genome alzheimer's
4
risk
4

Similar Publications

Vicia amoena is renowned for its high protein content and nutritional value, making it significant in animal production and traditional Chinese medicine production. In July 2023, typical anthracnose symptoms were observed on V. amoena leaves in Suihua City (125°82'E, 46°22'N), Heilongjiang Province, China, affecting approximately 40% of the plants (a total of 200 plants were surveyed).

View Article and Find Full Text PDF

Primary central nervous system diffused large B-cell lymphoma (PCNS-DLBCL) is a rare type of non-Hodgkin lymphoma restricted to the central nervous system (CNS). To explore its specific pathogenesis and therapeutic targets, we performed multi-omics sequencing on tumor samples from patients diagnosed with PCNS-DLBCL, secondary CNS-DLBCL or extracranial (ec) DLBCL.By single-cell RNA sequencing, highly proliferated and dark zone (DZ)-related B cell subclusters, MKI67_B1, PTTG1_B2 and BTG1_B3, were predominant significantly in PCNS-DLBCL.

View Article and Find Full Text PDF

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938.

Appl Microbiol Biotechnol

December 2024

Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.

View Article and Find Full Text PDF

Background: Post-traumatic stress disorder (PTSD) and depression are common after mild traumatic brain injury (mTBI), but their biological drivers are uncertain. We therefore explored whether polygenic risk scores (PRS) derived for PTSD and major depressive disorder (MDD) are associated with the development of cognate TBI-related phenotypes.

Methods: Meta-analyses were conducted using data from two multicenter, prospective observational cohort studies of patients with mTBI: the CENTER-TBI study (ClinicalTrials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!