Hybrid materials, with applications in fuchsine B color removal from wastewaters, were obtained by in situ incorporation of platinum nanoparticles and/or Pt-porphyrin derivatives into silica matrices. The inorganic silica matrices were synthesized by the sol-gel method, conducted in acid-base catalysis in two steps and further characterized by Nitrogen porosimetry, Small Angle Neutron Scattering (SANS), Scanning electron microscopy, Atomic force microscopy and UV-vis spectroscopy. All of the investigated silica hybrid materials were 100% efficient in removing fuchsine B if concentrations were lower than 1 × 10 M. For higher concentrations, the silica matrices containing platinum, either modified with Pt-metalloporphyrin or with platinum nanoparticles (PtNPs), are the most efficient materials for fuchsine B adsorption from wastewaters. It can be concluded that the presence of the platinum facilitates chemical interactions with the dye molecule through its amine functional groups. An excellent performance of 197.28 mg fuchsine B/g adsorbent material, in good agreement with the best values mentioned in literature, was achieved by PtNPs-silica material, capable of removing the dye from solutions of 5 × 10 M, even in still conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066414 | PMC |
http://dx.doi.org/10.3390/nano11040863 | DOI Listing |
Talanta
December 2024
National Centre for Compositional Characterization of Materials (NCCCM), Bhabha Atomic Research Centre, Department of Atomic Energy, Hyderabad, 500 062, India.
A new and high performance polytetrafluoroethylene (PTFE) digestor was designed and fabricated in-house for the total dissolution of granite samples for the determination of technology-critical elements (TCEs) by inductively coupled plasma optical emission spectrometry (ICP-OES). Initially, the granite sample (∼0.25 g) was placed in the PTFE digestor and added 8 mL(v/v) of 20%HF+40%HCl+10%HNO acid mixture.
View Article and Find Full Text PDFJ Fluoresc
December 2024
Department of Physics, Dibrugarh University, Dibrugarh, 786004, Assam, India.
Sol-gel silica matrices singly doped with Sm and co-doped with ligands phenyl phosphinic acid (PPIA) and trioctylphosphine oxide (TOPO) were fabricated and studied for their structural and spectroscopic behaviour. Structural studies were done by x-ray diffraction (XRD) and Fourier transform infra-red (FTIR) absorption analysis whereas spectroscopic behaviour was studied by ultraviolet - visible (UV-Vis) absorption, photoluminescence (PL) excitation, emission and time-correlated decay analyses. XRD studies exhibit the amorphous nature of the samples and FTIR studies corroborate the presence of the ligands in the silica matrix.
View Article and Find Full Text PDFAppl Spectrosc
December 2024
Office of Mine Safety and Health Research, National Institute for Occupational Safety and Health (NIOSH), Spokane, Washington, USA.
Mikrochim Acta
November 2024
Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov, 410012, Russia.
The aim of this study is to develop molecularly imprinted protein specific to zearalenone (ZEN). The primary idea of our study was to replace the toxic template-ZEN-with a dummy-template-4-hydroxicoumarin-during the synthesis of imprinted proteins (IPs). The choice of the dummy-template was based on the results of comprehensive evaluation that included a combination of blind docking and molecular dynamics simulations.
View Article and Find Full Text PDFGels
November 2024
Chemical Engineering Department and The Radical Research Center, Ariel University, Ariel 4070000, Israel.
The de-halogenation of highly concentrated halo-organic compounds using Zero Valent Iron entrapped in silica matrices as a catalyst was investigated. This study aimed to evaluate the effectiveness of the Zero Valent Iron-entrapped organically modified silica matrices in transforming highly concentrated hazardous halogenated compounds into environmentally benign materials in the presence of BH. The Zero Valent Iron-entrapped silica gel matrices were synthesized using the sol-gel method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!