Increasing machine learning methods are being applied to infrared non-destructive assessment for internal defects assessment of composite materials. However, most of them extract only linear features, which is not in accord with the nonlinear characteristics of infrared data. Moreover, limited infrared images tend to restrict the data analysis capabilities of machine learning methods. In this work, a novel generative kernel principal component thermography (GKPCT) method is proposed for defect detection of carbon fiber reinforced polymer (CFRP) composites. Specifically, the spectral normalization generative adversarial network is proposed to augment the thermograms for model construction. Sequentially, the KPCT method is used by feature mapping of all thermogram data using kernel principal component analysis, which allows for differentiation of defects and background in the dimensionality-reduced data. Additionally, a defect-background separation metric is designed to help the performance evaluation of data analysis methods. Experimental results on CFRP demonstrate the feasibility and advantages of the proposed GKPCT method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962653PMC
http://dx.doi.org/10.3390/polym13050825DOI Listing

Publication Analysis

Top Keywords

kernel principal
12
principal component
12
defect detection
8
detection carbon
8
carbon fiber
8
fiber reinforced
8
reinforced polymer
8
generative kernel
8
component thermography
8
machine learning
8

Similar Publications

Agronomic characteristics, mineral nutrient content, antioxidant capacity, biochemical composition, and fatty acid profile of Iranian pistachio (Pistacia vera L.) cultivars.

BMC Plant Biol

January 2025

Republic of Türkiye, Ministry of Agriculture and Forestry, Hatay Olive Research Institute Directorate, General Directorate of Agricultural Research and Policies, Hassa Station, Hassa, Hatay, 31700, Türkiye.

Background: Pistachio (Pistacia vera L.) nuts are among the most popular nuts. The pistachio cultivars are tolerant to both drought and salinity, which is why they are extensively grown in the arid, saline, and hot regions of the Middle East, Mediterranean countries, and the United States.

View Article and Find Full Text PDF

Identifying and quantifying the dominant factors influencing heavy metal (HM) pollution sources are essential for maintaining soil ecological health and implementing effective pollution control measures. This study analyzed soil HM samples from 53 different land use types in Jiaozuo City, Henan Province, China. Pollution sources were identified using Absolute Principal Component Score (APCS), with 8 anthropogenic factors, 9 natural factors, and 4 soil physicochemical properties mapped using Geographic Information System (GIS) kernel density estimation.

View Article and Find Full Text PDF

The precise identification of maize kernel varieties is essential for germplasm resource management, genetic diversity conservation, and the optimization of agricultural production. To address the need for rapid and non-destructive variety identification, this study developed a novel interpretable machine learning approach that integrates low-field nuclear magnetic resonance (LF-NMR) with morphological image features through an optimized support vector machine (SVM) framework. First, LF-NMR signals were obtained from eleven maize kernel varieties, and ten key features were extracted from the transverse relaxation decay curves.

View Article and Find Full Text PDF

Predicting purification process fit of monoclonal antibodies using machine learning.

MAbs

December 2025

Department of Purification, Microbiology and Virology, Genentech Inc, South San Francisco, CA, USA.

In early-stage development of therapeutic monoclonal antibodies, assessment of the viability and ease of their purification typically requires extensive experimentation. However, the work required for upstream protein expression and downstream purification development often conflicts with timeline pressures and material constraints, limiting the number of molecules and process conditions that can reasonably be assessed. Recently, high-throughput batch-binding screen data along with improved molecular descriptors have enabled development of robust quantitative structure-property relationship (QSPR) models that predict monoclonal antibody chromatographic binding behavior from the amino acid sequence.

View Article and Find Full Text PDF

Late wilt disease caused by the fungal pathogen represents a major threat to maize cultivation in the Mediterranean region. Developing resistant hybrids and high-yielding offers a cost-effective and environmentally sustainable solution to mitigate yield losses. Therefore, this study evaluated genetic variation, combining abilities, and inheritance patterns in newly developed twenty-seven maize hybrids for grain yield and resistance to late wilt disease under artificial inoculation across two growing seasons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!