Ginseng seeds are rich in phytosterols, ginsenosides, and fatty acids, and can therefore be used in skincare to delay the aging process. Ginseng seed embryo (GSE) and ginseng seed coat (GSC) were separated from ginseng seeds (Panax ginseng Meyer). This study evaluated the protective activity and underlying mechanism of GSE and GSC on UVB irradiation-induced skin photoaging using Hs68 cells. Their bioactive compounds, including phytosterols, ginsenosides, tocopherols, tocotrienols, and fatty acids were determined by HPLC and GC. The levels of reactive oxygen species, matrix metalloproteinases (MMPs), and collagen levels were measured in human dermal fibroblast cell line, Hs68 cells. The antioxidant capacity and contents of total polyphenols and flavonoids were higher in GSC than those in GSE. Linoleic acid was the major fatty acid in both GSE and GSC. GSE and GSC treatment alleviated UVB-induced increase of reactive oxygen species (ROS), matrix metalloproteinase (MMP)-1, and MMP-3, resulting in reduced collagen degradation. Increased UVB-mediated phosphorylation of mitogen activated protein kinase (MAPK) and activator protein-1 (AP-1) was inhibited by GSE and GSC treatment. Moreover, GSE and GSC effectively upregulated transforming growth factor-β (TGF-β) 1 levels. It was found that ginseng seeds regulate the expression of TGF-β/Smad and MAPK/AP-1 pathways. Ginseng seeds contain various bioactive compounds and have protective activity against UVB-induced skin photoaging. Therefore, ginseng seeds have the potential for use in cosmeceutical preparations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001990PMC
http://dx.doi.org/10.3390/antiox10030403DOI Listing

Publication Analysis

Top Keywords

ginseng seeds
24
gse gsc
20
protective activity
12
ginseng
9
activity underlying
8
underlying mechanism
8
phytosterols ginsenosides
8
fatty acids
8
ginseng seed
8
skin photoaging
8

Similar Publications

Background: Safflower thrives in dry environments but faces difficulties with flowering in wet and rainy summers. Flavonoids play a role in flower development and can potentially alleviate these challenges. Furthermore, the FLOWERING LOCUS T (FT) family of phosphatidylethanolamine-binding protein (PEBP) genes play a crucial role in the photoperiodic flowering pathway.

View Article and Find Full Text PDF

[Study on differences in metabolism and transcription of ginseng seeds after morphological post ripening by space flight].

Zhongguo Zhong Yao Za Zhi

September 2024

Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences Changchun 130112, China College of Pharmacy and Biological Engineering, Chengdu University Chengdu 610106, China.

To explore the difference in metabolism and transcription between seeds experiencing space flight and ground seeds after morphological post ripening, this study utilized ginseng seeds experiencing space flight and ground seeds as materials. Metabolomics and transcriptomics analyses were conducted using ultra-high performance liquid chromatography-mass spectrometry(UPLC-MS) and high-throughput transcriptome sequencing(RNA-seq) technologies, so as to identify differential terpenoid metabolites, differential endogenous hormones, and differentially expressed genes. The results showed that through metabolomics analysis, a total of 22 differential terpenoid metabolites were identified in the experimental and control groups, including chikusetsusaponin FK_7, ginsenoside F_2, ginseno-side K, majoroside R_1, ginsenoside Re_5, 12-hydroxyabietic acid, etc; through transcriptomics analysis, 15 differential terpenoid metabolism-related differentially expressed genes were identified in the experimental and control groups, including FCase, AACT, PMK, etc, and these genes were integrated into the pathway based on the MEP and MVA.

View Article and Find Full Text PDF

High-resolution genetic map and SNP chip for molecular breeding in a tetraploid medicinal plant.

Hortic Res

December 2024

Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture & Life Sciences, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

Ginseng () renowned as the king of medicinal plants. Ginseng grows slowly under shade conditions, requiring at least 4 years to produce a limited number of seeds. Molecular breeding of ginseng faces challenges due to its the tetraploid genome and the absence of an efficient molecular marker system.

View Article and Find Full Text PDF

Comparative transcriptome analysis provides novel insights into the seed germination of Panax japonicus, an endangered species in China.

BMC Plant Biol

December 2024

Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China.

Panax japonicus, an endangered species in China, is usually used as a traditional medicine with functions of hemostasis, pain relief, and detoxify. However, the seeds of P. japonicus are hard to germinate in natural conditions, and the molecular events and systematic changes occurring in seed germination are still largely unknown.

View Article and Find Full Text PDF

Research progress on chemical diversity of saponins in .

Chin Herb Med

October 2024

School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.

Saponins, the major bioactive components of C. A. Mey.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!