The problem of vortex shedding, which occurs when an obstacle is placed in a regular flow, is governed by Reynolds and Strouhal numbers, known by dimensional analysis. The present work aims to propose a thin films-based device, consisting of an elastic piezoelectric flapping flag clamped at one end, in order to determine the frequency of vortex shedding downstream an obstacle for a flow field at Reynolds number Re∼103 in the open channel. For these values, Strouhal number obtained in such way is in accordance with the results known in literature. Moreover, the development of the voltage over time, generated by the flapping flag under the load due to flow field, shows a highly fluctuating behavior and satisfies Taylor's law, observed in several complex systems. This provided useful information about the flow field through the constitutive law of the device.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962443PMC
http://dx.doi.org/10.3390/s21051871DOI Listing

Publication Analysis

Top Keywords

vortex shedding
12
flapping flag
12
flow field
12
open channel
8
taylor's law
8
direct scaling
4
scaling measure
4
measure vortex
4
shedding flapping
4
flag device
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!