Emotion recognition, as a challenging and active research area, has received considerable awareness in recent years. In this study, an attempt was made to extract complex network features from electroencephalogram (EEG) signals for emotion recognition. We proposed a novel method of constructing forward weighted horizontal visibility graphs (FWHVG) and backward weighted horizontal visibility graphs (BWHVG) based on angle measurement. The two types of complex networks were used to extract network features. Then, the two feature matrices were fused into a single feature matrix to classify EEG signals. The average emotion recognition accuracies based on complex network features of proposed method in the valence and arousal dimension were 97.53% and 97.75%. The proposed method achieved classification accuracies of 98.12% and 98.06% for valence and arousal when combined with time-domain features.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962200 | PMC |
http://dx.doi.org/10.3390/s21051870 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!