Experimental Investigation of Additive Manufacturing Using a Hot-Wire Plasma Welding Process on Titanium Parts.

Materials (Basel)

Automation for Material Processing Research Team, Material Processing and Manufacturing Automation Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand.

Published: March 2021

In this paper, we propose hot-wire plasma welding, a combination of the plasma welding (PAW) process and the hot-wire process in the additive manufacturing (AM) process. Generally, in plasma welding for AM processes, the deposit grain size increases, and the hardness decreases as the wall height increases. The coarse microstructure, along with the large grain size, corresponds to an increase in deposit temperature, which leads to poorer mechanical properties. At the same time, the hot-wire laser process seems to contain an overly high interstitial amount of oxygen and nitrogen. With an increasing emphasis on sustainability, the hot-wire plasma welding process offers significant advantages: deeper and narrow penetration than the cold-wire plasma welding, improved design flexibility, large deposition rates, and low dilution percentages. Thus, the hot-wire plasma welding process was investigated in this work. The wire used in the welding process was a titanium American Welding Society (AMS) 4951F (Grade 2) welding wire (diameter 1.6 mm), in which the welding was recorded in real time with a charge-coupled device camera (CCD camera). We studied three parameters of the hot-wire plasma welding process: (1) the welding speed, (2) wire current, and (3) wire feeding speed. The mechanical and physical properties (porosity, Vickers hardness, microstructure, and tensile strength) were examined. It was found that the number of layers, the length and width of the molten pool, and the width of the deposited bead increased, while the height of the layer increased, and the hot-wire current played an important role in the deposition. In addition, these results were benchmarked against specimens created by a hot-wire plasma welding/wire-based additive manufacturing process with an intention to develop the hot-wire PAW process as a potential alternative in the additive manufacturing industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962131PMC
http://dx.doi.org/10.3390/ma14051270DOI Listing

Publication Analysis

Top Keywords

plasma welding
32
hot-wire plasma
24
welding process
20
additive manufacturing
16
welding
13
process
11
hot-wire
10
plasma
9
process titanium
8
paw process
8

Similar Publications

Influence of Laser Micro-Texturing and Plasma Treatment on Adhesive Bonding Properties of WC-Co Carbides with Steel.

Materials (Basel)

December 2024

Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland.

This article presents research on advanced surface preparation methods for sintered carbides (WC-Co, grade B2) commonly used in the tool industry, particularly in the context of bonding these materials with C45 steel using adhesives. Sintered carbides are widely used due to their high hardness, wear resistance, and good ductility, making them ideal for manufacturing tools operating in harsh conditions. Traditional bonding methods, such as brazing and welding, often result in stresses and cracks.

View Article and Find Full Text PDF

Water scarcity is a global concern that needs addressing through alternative sources. One of the approaches is the use of reclaimed water for irrigation. However, the presence of halogenated compounds and heavy metals in reclaimed water poses significant food safety threats.

View Article and Find Full Text PDF

Regulating the phase ratio between austenite and ferrite in welded joints is crucial for welding super duplex stainless steel. Nitrogen plays a significant role in maintaining an optimal phase ratio. In this study, the focusing gas channel of gas-focused plasma arc welding was utilized to introduce nitrogen into the arc plasma, which was then transferred to the weld pool.

View Article and Find Full Text PDF

A Review of Welding Process for UNS S32750 Super Duplex Stainless Steel.

Materials (Basel)

October 2024

School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.

Super duplex stainless steel UNS S32750 is widely used in marine industries, pulp and paper industries, and the offshore oil and gas industry. Welding manufacturing is one of the main manufacturing processes to make material into products in the above fields. It is of great importance to obtain high-quality welded UNS S32750 joints.

View Article and Find Full Text PDF

Asymmetric Proton-Exchange-Enhanced Lithium Niobate and Silicon Low-Temperature Direct Bonding with an Ultrathin Heterogeneous Interface.

ACS Appl Mater Interfaces

November 2024

State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China.

The integration of lithium niobate (LiNbO or LN) and silicon (Si) has emerged as a promising heterogeneous platform for microelectromechanical systems (MEMSs) and photonic integrated circuits (PICs). Particularly, the lithium niobate on silicon (LNOS) architecture leverages the superior piezo-optomechanical properties of LN, making it compatible with superconducting circuits and quantum systems. This opens an avenue for the development of advanced quantum sensors and processors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!