Nanoparticles (NPs) are used in various medicinal applications. Exosomes, bio-derived NPs, are promising biomarkers obtained through separation and concentration from body fluids. Polydimethylsiloxane (PDMS)-based microchannels are well-suited for precise handling of NPs, offering benefits such as high gas permeability and low cytotoxicity. However, the large specific surface area of NPs may result in nonspecific adsorption on the device substrate and thus cause sample loss. Therefore, an understanding of NP adsorption on microchannels is important for the operation of microfluidic devices used for NP handling. Herein, we characterized NP adsorption on PDMS-based substrates and microchannels by atomic force microscopy to correlate NP adsorptivity with the electrostatic interactions associated with NP and dispersion medium properties. When polystyrene NP dispersions were introduced into PDMS-based microchannels at a constant flow rate, the number of adsorbed NPs decreased with decreasing NP and microchannel zeta potentials (i.e., with increasing pH), which suggested that the electrostatic interaction between the microchannel and NPs enhanced their repulsion. When exosome dispersions were introduced into PDMS-based microchannels with different wettabilities at constant flow rates, exosome adsorption was dominated by electrostatic interactions. The findings obtained should facilitate the preconcentration, separation, and sensing of NPs by PDMS-based microfluidic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998103PMC
http://dx.doi.org/10.3390/s21061978DOI Listing

Publication Analysis

Top Keywords

pdms-based microchannels
12
microfluidic devices
8
electrostatic interactions
8
dispersions introduced
8
introduced pdms-based
8
constant flow
8
nps
7
microchannels
6
adsorption
5
pdms-based
5

Similar Publications

Diverse tissues in vivo present varying degrees of confinement, constriction, and compression to migrating cells in both homeostasis and disease. The nucleus in particular is subjected to external forces by the physical environment during confined migration. While many systems have been developed to induce nuclear deformation and analyze resultant functional changes, much remains unclear about dynamic volume regulation in confinement due to limitations in time resolution and difficulty imaging in PDMS-based microfluidic chips.

View Article and Find Full Text PDF

Recent Advances of PDMS In Vitro Biomodels for Flow Visualizations and Measurements: From Macro to Nanoscale Applications.

Micromachines (Basel)

October 2024

MEtRICs-Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.

Polydimethylsiloxane (PDMS) has become a popular material in microfluidic and macroscale in vitro models due to its elastomeric properties and versatility. PDMS-based biomodels are widely used in blood flow studies, offering a platform for improving flow models and validating numerical simulations. This review highlights recent advances in bioflow studies conducted using both PDMS microfluidic devices and macroscale biomodels, particularly in replicating physiological environments.

View Article and Find Full Text PDF

The optofluidic microreactor, a convergence of optics and microfluidics, offers advanced functionalities that can be pivotal in the rapid assessment of nanocatalysts for tackling environmental contamination issues. This article presents an efficient approach for degrading Methylene blue (MB) dye, commonly used in the textile industry, within a cost-effective polydimethylsiloxane (PDMS) based continuous flow optofluidic microreactor. This microreactor combines graphene quantum dots (QDs) and NH-MIL-125 (MOF(Ti)) as a highly effective photocatalyst coating within its microchannels.

View Article and Find Full Text PDF

A miniature multi-channel surface-enhanced Raman scattering (SERS) sensor based on polydimethylsiloxane (PDMS) is constructed to achieve rapid delivery of polluted water and specific identification of multiple components. Hg, organic pollutants, and sodium nitrite are successfully identified by the multi-channel SERS sensor using Cy5, cyclodextrin, and urea in the corresponding detection area. This multi-channel sensor exhibits excellent sensitivity and specificity, with detection limits of 3.

View Article and Find Full Text PDF

Continuous Sampling of Aerosolized Particles Using Stratified Two-Phase Microfluidics.

ACS Sens

June 2024

Center for Multiphase Flow Research and Education, Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States.

Health and security concerns have made it essential to develop integrated, continuous collection and sensing platforms that are compact and capable of real-time detection. In this study, we numerically investigate the flow physics associated with the single-step collection and enrichment of aerosolized polystyrene microparticles into a flowing liquid using a stratified air-water flow in a U-shaped microchannel. We validate our simulation results by comparing them to experimental data from the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!