The aim of the current study is to investigate potential associations among Long Noncoding RNA (LncRNA) H19 single nucleotide polymorphism (SNP) and epidermal growth factor receptor (EGFR) phenotypes on the clinicopathological characteristics of lung adenocarcinoma (LADC). Five loci of LncRNA H19 SNPs (rs217727, rs2107425, rs2839698, rs3024270, and rs3741219) were genotyped by using TaqMan allelic discrimination in 223 LADC patients with wild-type EGFR phenotype and 323 LADC individuals with EGFR mutations. After the statistical analyses, patients with the EGFR mutation were related to a higher distribution frequency of rs217727 SNP CT heterozygote ( = 0.030), and the female population with EGFR mutation demonstrated a higher distribution frequency of rs217727 SNP CT heterozygote ( < 0.001) and rs2107425 CT heterozygote ( = 0.002). In addition, the presence of LncRNA H19 SNP rs217727 T allele (CT + TT) in patients with EGFR wild-type was associated to higher tumor T status (stage III or IV, = 0.037) and poorer cell differentiation status (poor differentiation, = 0.012) compared to those EGFR wild-type individuals with LncRNA H19 SNP rs217727 CC allele. Besides, a prominently higher tumor T status was found in subjects with LncRNA H19 SNP rs2107425 T allele (CT + TT) (stage III or IV, = 0.007) compared to EGFR wild-type LADC individuals with LncRNA CC allele in EGFR wild-type patients. Our findings suggest that the presence of LncRNA H19 SNP rs217727 is related to the EGFR mutation in LADC patients, and the LncRNA H19 SNP rs217727 and rs2107425 are associated with progressed tumor status for LADC patients with EGFR wild-type.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998702PMC
http://dx.doi.org/10.3390/ijerph18062862DOI Listing

Publication Analysis

Top Keywords

lncrna h19
28
h19 snp
20
egfr wild-type
20
snp rs217727
16
ladc patients
12
patients egfr
12
egfr mutation
12
tumor status
12
egfr
11
long noncoding
8

Similar Publications

Cracking the code: lncRNA-miRNA-mRNA integrated network analysis unveiling lncRNAs as promising non-invasive NAFLD biomarkers toward precision diagnosis.

Comput Biol Chem

January 2025

Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt. Electronic address:

Background: Non-alcoholic fatty liver disease (NAFLD) involves abnormal fat accumulation in the liver, mainly as triglycerides. It ranges from steatosis to non-alcoholic steatohepatitis (NASH), which can lead to inflammation, cellular damage, liver fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) are crucial for regulating gene expression across various conditions.

View Article and Find Full Text PDF

Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the role of miR-483-5p in regulating the overexpression of IGF2 and H19, which are linked to hepatocellular carcinoma (HCC).
  • miR-483-5p enhances IGF2 and H19 expression by binding to their enhancer, activating transcription, and promoting new interactions between the enhancer and gene promoters through chromatin loops.
  • The research highlights that MED1 is crucial in this process, influencing both chromatin structure and the aggressive behavior of HCC cells, indicating potential targets for therapeutic interventions.
View Article and Find Full Text PDF

Platinum resistance is a common cause of chemotherapy failure in lung adenocarcinoma (LUAD). Competing endogenous RNAs (ceRNAs), which function by competitively binding to miRNAs, can influence drug response. However, the regulatory mechanisms of ceRNAs underlying chemoresistance in LUAD remain largely unknown.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!