Osteomyelitis and orthopedic infections are major clinical problems, limited by a lack of antibiotics specialized for such applications. In this paper, we describe the design and synthesis of a novel bone-binding antibiotic (BBA-1) and its subsequent structural and functional characterization. The synthesis of BBA-1 was the result of a two-step chemical conjugation of cationic selective antimicrobial-90 (CSA-90) and the bisphosphonate alendronate (ALN) via a heterobifunctional linker. This was analytically confirmed by HPLC, FT-IR, MS and NMR spectroscopy. BBA-1 showed rapid binding and high affinity to bone mineral in an in vitro hydroxyapatite binding assay. Kirby-Baur assays confirmed that BBA-1 shows a potent antibacterial activity against and methicillin-resistant comparable to CSA-90. Differentiation of cultured osteoblasts in media supplemented with BBA-1 led to increased alkaline phosphatase expression, which is consistent with the pro-osteogenic activity of CSA-90. Bisphosphonates, such as ALN, are inhibitors of protein prenylation, however, the amine conjugation of ALN to CSA-90 disrupted this activity in an in vitro protein prenylation assay. Overall, these findings support the antimicrobial, bone-binding, and pro-osteogenic activities of BBA-1. The compound and related agents have the potential to ensure lasting activity against osteomyelitis after systemic delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999004PMC
http://dx.doi.org/10.3390/molecules26061541DOI Listing

Publication Analysis

Top Keywords

protein prenylation
8
bba-1
7
synthesis characterization
4
characterization bone
4
bone binding
4
binding antibiotic-1
4
antibiotic-1 bba-1
4
bba-1 novel
4
novel antimicrobial
4
antimicrobial orthopedic
4

Similar Publications

Fibrosis, characterised by excessive extracellular matrix deposition, contributes to both organ failure and significant mortality worldwide. Whereas fibroblasts are activated into myofibroblasts, marked by phenotypic factors such as α-smooth muscle actin (α-SMA), periostin, fibroblast activation protein (FAP) and heat shock protein 47 (HSP47), the cellular processes of trans-differentiation for fibrosis development remain poorly understood. Herein, we hypothesised that the molecular signalling of geranylgeranyl pyrophosphate (GGPP), a crucial biochemical molecule for protein prenylation, is essential in the regulation of profibrotic mechanisms for fibroblast-to-myofibroblast activation.

View Article and Find Full Text PDF

Evaluation of agonistic and antagonistic effects of unprenylated and prenylated flavonoids on estrogen receptor-α.

Chem Biol Interact

December 2024

Department of Food Science and Biotechnology, Andong National University, Andong, 36729, Republic of Korea. Electronic address:

Prenylation, which involves the addition of hydrophobic molecules, is considered to enhance the bioavailability and biological activity of flavonoids. However, the effect of prenylation on the estrogenic activity of flavonoids with different structures remains unclear. This study evaluated the estrogen receptor-α (ER-α) agonistic and antagonistic activities of estrogenic flavonoids in both unprenylated and prenylated forms using OECD standardized in vitro ER-α transactivation assay and in vivo uterine hypertrophy assay.

View Article and Find Full Text PDF

Prenylation consists of the modification of proteins with either farnesyl diphosphate (FPP) or geranylgeranyl diphosphate (GGPP) at a cysteine near the C-terminus of target proteins to generate thioether-linked lipidated proteins. In recent work, metabolic labeling with alkyne-containing isoprenoid analogues including C15AlkOPP has been used to identify prenylated proteins and track their levels in different diseases. Here, a systematic study of the impact of isoprenoid length on proteins labeled with these probes was performed.

View Article and Find Full Text PDF

Enzyme cascades for in vitro and in vivo FMN prenylation and UbiD (de)carboxylase activation under aerobic conditions.

Methods Enzymol

November 2024

Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada. Electronic address:

Microbial carboxylases and decarboxylases play important roles in the global carbon cycle and have many potential applications in biocatalysis and synthetic biology. The widespread family of reversible UbiD-like (de)carboxylases are of particular interest because these enzymes are active against a diverse range of substrates. Several characterized UbiD enzymes have been shown to catalyze reversible (de)carboxylation of aromatic and aliphatic substrates using the recently discovered prenylated FMN (prFMN) cofactor, which is produced by the associated family of UbiX FMN prenyltransferases.

View Article and Find Full Text PDF

Functional dissection of prenyltransferases reveals roles in endocytosis and secretory vacuolar sorting in type 2-ME49 strain of .

Virulence

December 2024

Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China.

Prenyltransferases act essential roles in the prenylation modification, which is significant for proteins, like small GTPases to execute various important activities in (). The structures and partial functions of prenyltransferases (FTase, GGTase-I, and GGTase-II) in prenylation process have been dissected in . However, the cellular effects of prenyltransferases on type 2-ME49 strain of are largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!