Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Green electrospinning is a relatively new promising technology in which a polymer (latex) can be spun from an aqueous dispersion with the help of a template polymer. This method is a green, clean and safe technology that is able to spin hydrophobic polymers using water as an electrospinning medium. In this article, a systematic study that investigates the influence of the template polymer molar mass, the total solids content of the initial dispersion and the particle/template ratio is presented. Furthermore, the influence of the surfactant used to stabilize the polymer particles, the surface functionality of the polymer particles and the use of a bimodal particle size distribution on the final fiber morphology is studied for the first time. In green electrospinning, the viscosity of the initial complex blend depends on the amount and molar mass of the template polymer but also on the total solids content of the dispersion to be spun. Thus, both parameters must be carefully taken into account in order to fine-tune the final fiber morphology. Additionally, the particle packing and the surface chemistry of the polymer particles also play an important role in the obtained nanofibers quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999345 | PMC |
http://dx.doi.org/10.3390/nano11030706 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!