Glaesserella parasuis induces inflammatory response in 3D4/21 cells through activation of NLRP3 inflammasome signaling pathway via ROS.

Vet Microbiol

MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. Electronic address:

Published: May 2021

Glaesserella parasuis (G. parasuis) is an important pathogenic bacterium that can cause Glässer's disease, and it has resulted in tremendous economic losses to the global swine industry. The intensive pulmonary inflammatory response caused by G. parasuis infection is the main cause of lung injury and death in pigs. However, the exact mechanism by which it causes severe pulmonary inflammation is not fully understood yet. In this study, severe pneumonia was observed in piglets infected with G. parasuis; and an infection cell model was established using porcine alveolar macrophages cell line 3D4/21, which was determined to be susceptible to G. parasuis infection in vitro. G. parasuis infection of 3D4/21 cells induced upregulation of proinflammatory cytokines TNF-α, IL-1β, IL-18 and production of intracellular reactive oxygen species (ROS). The expression of IL-1β related to activation of the NLRP3 inflammasome signaling pathway, which had not been shown before in G. parasuis infection. Furthermore, it was first found that release of intracellular ROS, which was mediated by NADPH oxidase in 3D4/21 cells, was found crucial for the activation of the NLRP3 signaling pathway and promoted the expression of proinflammatory cytokines, such as TNF-α and IL-1. In general, this study explored the specific mechanism of severe pulmonary inflammation caused by G. parasuis infection, and provides a foundation for further elucidating the pathogenic mechanism of G. parasuis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2021.109057DOI Listing

Publication Analysis

Top Keywords

parasuis infection
24
3d4/21 cells
12
activation nlrp3
12
signaling pathway
12
parasuis
9
glaesserella parasuis
8
inflammatory response
8
nlrp3 inflammasome
8
inflammasome signaling
8
caused parasuis
8

Similar Publications

Pig nasal and rectal microbiotas are involved in the antibody response to Glaesserella parasuis.

Sci Rep

January 2025

Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.

Vaccination stands as one of the most sustainable and promising strategies to control infectious diseases in animal production. Nevertheless, the causes for antibody response variation among individuals are poorly understood. The animal microbiota has been shown to be involved in the correct development and function of the host immunity, including the antibody response.

View Article and Find Full Text PDF

Glaesserella parasuis serotype 5 promotes pyroptosis via degrading Caveolin-1 in 3D4/21 cells.

Vet Microbiol

January 2025

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China. Electronic address:

Glaesserella parasuis (G. parasuis) is an important pathogen, which can cause systemic inflammatory response in pigs and bring huge economic losses to the global swine industry. G.

View Article and Find Full Text PDF

First isolation of from clinical specimens collected on a pig farm in Poland.

J Vet Res

December 2024

Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland.

Introduction: Successful retrieval of from porcine clinical specimens has been rarely described, and data has only been obtained from a few swine-producing countries. Therefore, the aim of this study was the isolation of recovered from a specimen originating from a commercial pig farm located in Poland.

Material And Methods: Seven dead 12-week-old pigs weighing 24-26 kg with joint swelling of the hind legs were selected on a modern farrow-to-nursery farm in Poland in October 2023.

View Article and Find Full Text PDF

Streptococcus suis is a worldwide pathogen that impacts the swine industry, causing severe clinical signs, including meningitis and arthritis, in postweaning piglets. A key virulence mechanism of S. suis is biofilm formation, which improves its persistence and resistance to external factors.

View Article and Find Full Text PDF
Article Synopsis
  • Pathogenic infections pose significant health risks to livestock, leading to the exploration of herbal alternatives like Cordyceps militaris (C. militaris) due to concerns about antibiotic resistance and the traditional use of antibiotic growth promoters.
  • The study found that the ethanol extract from C. militaris not only has strong antioxidant properties but also effectively inhibits common pig pathogens and reduces inflammation in pig cells, indicating its potential health benefits.
  • Pigs supplemented with C. militaris showed improved growth performance and enhanced immune responses, suggesting its viability as a natural growth promoter in livestock.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!