Herein we reported the synthesis of twenty new organoselenium compounds (2a-2j and 3a-3j) based on the hybridization of nonsteroidal antiinflammatory drugs (NSAIDs) skeleton and organoselenium motif (-SeCN and -SeCF), the anticancer activity was evaluated against four types of cancer cell lines, Caco-2 (human colon adenocarcinoma cells), BGC-823 (human gastric cancer cells), MCF-7 (human breast adenocarcinoma cells), PC-3 (human prostatic cancer cells). Interestingly, the introduction of the -SeCN or -SeCF moiety in corresponding parent NSAIDs results in the significant effect on cancer cell lines. Moreover, the most active compound 3a showed IC values lower than 5 μM against the four cancer cell lines, particularly to BGC-823 and MCF-7 with IC values of 2.5 and 2.7 μM, respectively. Furthermore, three compounds 3a, 3g and 3i were selected to investigate their ability to induce apoptosis in BGC-823 cells via modulating the expression of anti-apoptotic Bcl-2 protein, pro-inflammatory cytokines (IL-2) and proapoptotic caspase-8 protein. The redox properties of the NSAIDs-Se derivatives prepared herein were conducted by 2, 2-didiphenyl-1-picrylhydrazyl (DPPH), bleomycin dependent DNA damage and glutathione peroxidase (GPx)-like assays. Finally, molecular docking study revealed that an interaction with the active site of thioredoxin reductase 1 (TrxR1) and predicted the anticancer activity of the synthesized candidates. Overall, these results could serve a promising launch point for further design of NSAIDs-Se derivatives as potential anticancer agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2021.113384 | DOI Listing |
Molecules
July 2022
School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan 430056, China.
In this study, we report on the synthesis of new organoselenium derivatives, including nonsteroidal anti-inflammatory drugs (NSAIDs) scaffolds and Se functionalities (isoselenocyanate and selenourea), which were evaluated against four types of cancer cell line: SW480 (human colon adenocarcinoma cells), HeLa (human cervical cancer cells), A549 (human lung carcinoma cells), MCF-7 (human breast adenocarcinoma cells). Among these compounds, most of the investigated compounds reduced the viability of different cancer cell lines. The most promising compound showed IC values under 10 μM against the four cancer cell lines, particularly to HeLa and MCF-7, with IC values of 2.
View Article and Find Full Text PDFInt Immunopharmacol
December 2021
College of Life Science, Liaoning University, Shenyang 110036, China. Electronic address:
Neuro-inflammation is an immune response of the central nervous system (CNS) to pathogens, and it is associated with a variety of neurodegenerative diseases. Microglial cells are the main category of macrophages in the CNS parenchyma, and they represent one of the most important cellular drivers and regulators of neuroinflammation. In this study, nine new organoselenium compounds based on the hybridization of nonsteroidal anti-inflammatory drugs (NSAIDs) skeleton and organoselenium motif (-SeCN and -SeCF3) were synthesized and their potential anti-neuroinflammatory effects were evaluated using LPS-induced BV2 mouse microglia.
View Article and Find Full Text PDFEur J Med Chem
June 2021
Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China; Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France. Electronic address:
Herein we reported the synthesis of twenty new organoselenium compounds (2a-2j and 3a-3j) based on the hybridization of nonsteroidal antiinflammatory drugs (NSAIDs) skeleton and organoselenium motif (-SeCN and -SeCF), the anticancer activity was evaluated against four types of cancer cell lines, Caco-2 (human colon adenocarcinoma cells), BGC-823 (human gastric cancer cells), MCF-7 (human breast adenocarcinoma cells), PC-3 (human prostatic cancer cells). Interestingly, the introduction of the -SeCN or -SeCF moiety in corresponding parent NSAIDs results in the significant effect on cancer cell lines. Moreover, the most active compound 3a showed IC values lower than 5 μM against the four cancer cell lines, particularly to BGC-823 and MCF-7 with IC values of 2.
View Article and Find Full Text PDFEur J Med Chem
December 2020
Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China; Institut Parisien de Chimie Moléculaire, UMR 8232, CNRS, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France. Electronic address:
A series of organoselenium compounds based on the hybridization of nonsteroidal antiinflammatory drugs (NSAIDs) scaffolds and Se functionalities (-SeCN and -SeCF) were synthesized and characterized, and evaluated against four types of cancer cell lines, SW480 (human colon adenocarcinoma cells), HeLa (human cervical cancer cells), A549 (human lung carcinoma cells), MCF-7 (human breast adenocarcinoma cells). Interestingly, most of the investigated compounds showed active in reducing the viability of different cancer cell lines. The most active compound 3h showed IC values lower than 20 μM against the four cancer cell lines, particularly to SW480 and MCF-7 with IC 50 values of 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!