Label free detection of miRNA-21 with electrolyte gated organic field effect transistors (EGOFETs).

Biosens Bioelectron

Department of Life Sciences, Università, Degli Studi di Modena e Reggio Emilia, Via Campi 103, I-41125, Modena, Italy; Center for Translational Neurophysiology - Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, I-44100, Ferrara, Italy.

Published: June 2021

AI Article Synopsis

  • - The research presents a new type of organic transistor designed for detecting miRNA-21 concentrations in solution, using a dual gate structure to measure responses from both sensing and reference electrodes in an electrolyte.
  • - This device significantly reduces the current when miRNA-21 hybridizes with oligonucleotide, achieving a detection limit as low as 35 picomolar, and displays maximum sensitivity under specific gate voltage conditions.
  • - The study analyzes the hybridization reactions using a thermodynamic model, revealing that the binding energy on the device surface is about 20% lower than in solution due to surface interactions and competing reactions, while also confirming the device's selectivity using complementary techniques like SPR.

Article Abstract

We report a dual gate/common channel organic transistor architecture designed for quantifying the concentration of one of the strands of miRNA-21 in solution. The device allows one to measure the differential response between two gate electrodes, viz. one sensing and one reference, both immersed in the electrolyte above the transistor channel. Hybridization with oligonucleotide in the picomolar regime induces a sizable reduction of the current flowing through the transistor channel. The device signal is reported at various gate voltages, showing maximum sensitivity in the sublinear regime, with a limit of detection as low as 35 pM. We describe the dose curves with an analytical function derived from a thermodynamic model of the reaction equilibria relevant in our experiment and device configuration, and we show that the apparent Hill dependence on analyte concentration, whose exponent lies between 0.5 and 1, emerges from the interplay of the different equilibria. The binding free energy characteristic of the hybridization on the device surface is found to be approximately 20% lower with respect to the reaction in solution, hinting to partially inhibiting effect of the surface and presence of competing reactions. Impedance spectroscopy and surface plasmon resonance (SPR) performed on the same oligonucleotide pair were correlated to the electronic current transduced by the EGOFET, and confirmed the selectivity of the biorecognition probe covalently bound on the gold surface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2021.113144DOI Listing

Publication Analysis

Top Keywords

transistor channel
8
label free
4
free detection
4
detection mirna-21
4
mirna-21 electrolyte
4
electrolyte gated
4
gated organic
4
organic field
4
field transistors
4
transistors egofets
4

Similar Publications

High-performance van der Waals stacked transistors based on ultrathin GaPS dielectrics.

Nanoscale

January 2025

School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.

Article Synopsis
  • Exploring high-κ gate dielectrics is vital for enhancing the performance of field-effect transistors (FETs).
  • The study introduces few-layer gallium thiophosphate (GaPS) as a new semiconductor material with a dielectric constant of about 5.3, which can be easily obtained through mechanical exfoliation.
  • FETs using GaPS as the top-gate dielectric and MoS as the channel material demonstrated impressive performance metrics, indicating that GaPS could be a promising option for advancing two-dimensional electronic devices.
View Article and Find Full Text PDF

Advances in the semiconductor industry have been limited owing to the constraints imposed by silicon-based CMOS technology; hence, innovative device design approaches are necessary. This study focuses on "more than Moore" approaches, specifically in neuromorphic computing. Although MoS devices have attracted attention as neuromorphic computing candidates, their performances have been limited due to environment-induced perturbations to carrier dynamics and the formation of defect states.

View Article and Find Full Text PDF

Synthesis and Optoelectronic Characterizations of Conjugated Polymers Based on Diketopyrrolopyrrole and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile Via Knoevenagel Condensation.

Macromol Rapid Commun

January 2025

State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

Conjugated polymers have attracted extensive attention as semiconducting materials in wearable and flexible electronics. In this study, we utilize atom-economical Knoevenagel reaction to construct two conjugated polymers, PTDPP-CNTT and PFDPP-CNTT, based on dialdehyde-thiophene/furan-flanked diketopyrrolopyrrole (DPP) and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile (CNTT). The resulting polymers exhibited suitable highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energy levels, small bandgaps, and broad UV-vis-NIR absorptions (≈400-1000 nm), endowing them with photothermal and balanced ambipolar semiconducting properties with hole and electron mobilities over 10 cmVs.

View Article and Find Full Text PDF

High-performance ternary logic circuits and neural networks based on carbon nanotube source-gating transistors.

Sci Adv

January 2025

Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China.

Multi-valued logics (MVLs) offer higher information density, reduced circuit and interconnect complexity, lower power dissipation, and faster speed over conventional binary logic system. Recent advancement in MVL research, particularly with emerging low-dimensional materials, suggests that breakthroughs may be imminent if multistates transistors can be fabricated controllably for large-scale integration. Here, a concept of source-gating transistors (SGTs) is developed and realized using carbon nanotubes (CNTs).

View Article and Find Full Text PDF

Ferroelectric/Electric-Double-Layer-Modulated Synaptic Thin Film Transistors toward an Artificial Tactile Perception System.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China.

Tactile sensation and recognition in the human brain are indispensable for interaction between the human body and the surrounding environment. It is quite significant for intelligent robots to simulate human perception and decision-making functions in a more human-like way to perform complex tasks. A combination of tactile piezoelectric sensors with neuromorphic transistors provides an alternative way to achieve perception and cognition functions for intelligent robots in human-machine interaction scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!