Thermal use of the shallow subsurface and its aquifers (< 400 m) is steadily increasing. Currently, more than 2800 aquifer thermal energy storage (ATES) systems are operating worldwide alongside more than 1.2 million ground source heat pump (GSHP) systems in Europe alone. These rising numbers of shallow geothermal energy (SGE) systems will put additional pressure on typically vulnerable groundwater systems. Hitherto, suitable criteria to control the thermal use of groundwater in national and international legislations are often still at a preliminary state or even non-existing. While the European Union (EU) Water Framework Directive (WFD) defined the release of heat into the groundwater as pollution in the year 2000, the cooling of groundwater for heating purposes is not explicitly mentioned yet. In contrast, some national legislations have stricter guidelines. For example, in Germany, detrimental changes in physical, chemical and biological characteristics have to be avoided. In the Swiss water ordinance, it is even recommended that the groundwater biocenosis should be kept in natural state. However, exact definitions of 'detrimental changes' and 'natural state' are still missing. Hence, the current study provides an overview on natural and affected thermal groundwater conditions and international and national legislations of the thermal use of groundwater. Also, it presents recent studies on groundwater ecosystems and proposes a sustainable policy framework for the thermal use of groundwater. In addition to geothermal heat sources, other anthropogenic heat sources such as climate change, underground car parks, heated basements, district heating systems, land fills, wastewater treatment plants and mining are considered, although no legislation on these anthropogenic heat sources and their impact on groundwater is currently in place. Finally, we intend to answer the above question and provide recommendations for the further discussions on the joint use of shallow groundwater systems for drinking water production and thermal use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconhyd.2021.103791 | DOI Listing |
BMC Microbiol
December 2024
Winogradsky Institute of Microbiology Federal Research Center Fundamentals of Biotechnology Russian Academy of Sciences, 60 let Oktyabrya Prospect, 7 Build.2, Moscow, Russia.
The Kuril Islands are located in the Far-East of Russia and enriched with shallow and terrestrial hot springs. Prokaryotic diversity of Kuril geothermal environments has been studied fragmentarily and mainly by culture-dependent methods. We performed the first large-scale investigation of microbial communities, inhabited more than 30 terrestrial hot springs of Kunashir and Iturup Islands, analyzed by 16S rRNA gene fragment amplicon sequencing, together with chemical analysis of thermal waters and sediments.
View Article and Find Full Text PDFChemosphere
December 2024
Division of Advanced Nuclear Engineering, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang, South Korea; Division of Environmental Science & Engineering, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang, South Korea. Electronic address:
Bentonite is regarded as an adequate buffer material in deep geological repositories and its swelling properties serve to prevent the penetration of groundwater into the repository and to minimize the release of radionuclides. However, bentonite is rarely effective in removing anionic radionuclides due to its permanent negative surface charge. The aim of this study was to enhance the anion removal ability of bentonite by incorporating layered double hydroxides (LDH) with a high anion exchange capacity.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Polish Geological Institute-National Research Institute, Lower Silesian Branch, 53-122 Wrocław, Poland.
Geothermal energy is a crucial component contributing to the development of local thermal energy systems as a carbon-neutral and reliable energy source. Insights into its availability derive from knowledge of geology, hydrogeology and the thermal regime of the subsurface. This expertise helps to locate and monitor geothermal installations as well as observe diverse aspects of natural and man-made thermal effects.
View Article and Find Full Text PDFSci Total Environ
December 2024
Center for Ecohydraulics Research, Department of Civil and Environmental Engineering, University of Idaho, 322 E. Front St., Boise, ID 83702, USA.
Water temperature is a fundamental driver of physical processes, metabolic rates, and habitat availability in fluvial systems. As anthropogenic activities and climate change increase river temperatures and associated thermal stress on aquatic organisms, river restoration has focused on moderating thermal regimes and creating localized cold-water refuges. Restoration of a 2.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Resolventa Ltd, Asbestovsky Lane, 4Zh, 620041, Yekaterinburg, Russia.
The uranium mines both developed and abandoned appear to be one of the most significant sources of radon exhalation in the world. Therefore, the study of radon exposure of the population in the areas around rehabilitated uranium mines is very important. This article presents the results of the radon release studies at the rehabilitated Beshtaugorsky uranium mine site, which is now used by local people for hiking and picnicking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!