Anaerobic co-digestion of organic fraction of municipal solid waste with solid content greater than 20% and chicken manure was investigated using leach-bed reactors in the framework of Middle East and North African countries. The objectives of the experiments were to determine the optimal ratio of organic fraction, chicken manure and solid inoculum, to compare temperature conditions and usage of liquid inoculum or water in percolation process. The highest specific methane yield (SMY) (236 L ∙ kg VS) was received in the reactors with 20/80 organic fraction/solid inoculum ratio under thermophilic conditions with liquid inoculum percolation. Under the same conditions but mesophilic temperature, SMY dropped by 12%. Replacing liquid inoculum by water led to 172 L ∙ kg VS. Addition of chicken manure to the substrate mixture positively influences a start-up phase and keeps pH in optimal range 6.5-8, despite the high ammonia concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.125023DOI Listing

Publication Analysis

Top Keywords

organic fraction
12
chicken manure
12
liquid inoculum
12
co-digestion organic
8
fraction municipal
8
municipal solid
8
inoculum water
8
solid
5
inoculum
5
optimal conditions
4

Similar Publications

Algal decomposition plays an important role in affecting phosphorus (P) release from sediments in eutrophic lakes under global warming. Yet how rising air temperature affect endogenous P release from sediments during the algal decomposition is poorly understood. In this study, effect of increasing air temperature on endogenous P release was investigated.

View Article and Find Full Text PDF

Protein concentrate (PC) is a potential solution to address the global protein shortage, with Indonesian shortfin eel being a suitable raw material. This research investigates the impact of ultrasound pretreatment and extraction parameters on the nutritional quality of eel protein concentrate (EPC). The study involved ultrasonic pretreatment at different times and power, and solvent extraction with different solvents, temperature, and solvent-solid-feed-ratio (SSFR).

View Article and Find Full Text PDF

Enhancing the passivation of heavy metals and increasing organic matter content during the composting of sewage sludge poses significant challenges for maximizing its utilization value. Results indicated that in the control, biochar, microbial agents and microbial agents-loaded biochar (BCLMA) groups, BCLMA addition led to a higher composting temperature, with increases of 17-62% in humic acid, 25-73% in germination index, and 30-35% in organic matter consumption. And the residual fraction of Cu, Zn, Cr and Cd were increased by 30%, 12%, 22% and 17%, respectively.

View Article and Find Full Text PDF

Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.

View Article and Find Full Text PDF

While gas chromatography mass spectrometry (GC-MS) has long been used to identify compounds in complex mixtures, this process is often subjective and time-consuming and leaves a large fraction of seemingly good-quality spectra unidentified. In this work, we describe a set of new mass spectral library-based methods to assist compound identification in complex mixtures. These methods employ mass spectral uniqueness and compound ubiquity of library entries alongside noise reduction and automated comparison of retention indices to library compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!