Biomass enhances the reduction of oxidized pellets with carbon monoxide.

Bioresour Technol

Center for Biorefning and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA.

Published: July 2021

AI Article Synopsis

  • The study investigates how using CO to reduce biomass-oxidized pellets (BOP) and general-oxidized pellets (GOP) functions, highlighting the influence of biomass addition on reduction kinetics.
  • Adding 2 wt% biomass increases the pores in oxidized pellets, allowing for better CO absorption and faster reduction.
  • The inclusion of biomass not only lowers the activation energy required for reduction but also reduces the overall reduction time by 3%, leading to lower energy consumption and positive environmental impacts.

Article Abstract

In this study, the reduction mechanism of using CO to reduce biomass-oxidized pellets (BOP) and general-oxidized pellets (GOP) was deeply analyzed. The effect of biomass addition on the reduction of oxidized pellets and the change of reduction kinetics were studied. The addition of 2 wt% biomass into pellets increases pores of the oxidized pellets, promotes the rate of CO entering the pellets and the overflow of CO, which results in faster reduction of the oxidized pellets. The reduction reactions of BOP and GOP were controlled by internal diffusion, mixing control and interface control sequentially. Also, addition of the biomass to the pellets decreases the activation energy required for their reduction, from 87.30 to 80.65 kJ·mol. The addition of biomass shortens the reduction time by 3% which can reduce the energy consumption. Therefore, the biomass together with CO enhances the reduction of oxidized pellets and has real environmental benefits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.124973DOI Listing

Publication Analysis

Top Keywords

oxidized pellets
20
reduction oxidized
16
pellets
10
reduction
9
biomass enhances
8
enhances reduction
8
biomass pellets
8
addition biomass
8
biomass
6
oxidized
5

Similar Publications

() utilizes heme as an iron source from the host during infection. Biliverdin beta and delta (BVIXβ and BVIXδ) are generated by HemO, specific to , while biliverdin alpha is generated from the bacterial BphO system and by mammalian heme oxygenases. Here, we have developed and characterized a quantitative LC-MS/MS assay for the separation of three endogenous isomers, BVIXα, BVIXβ, and BVIXδ.

View Article and Find Full Text PDF

Inflammation models with the proinflammatory cytokine interleukin-1β (IL-1β) are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis (OA). The aim of this study was to systematically analyze the influence of IL-1β in a 3D chondral pellet culture model. Bovine articular chondrocytes were cultured to passage 3 and then placed in pellet culture.

View Article and Find Full Text PDF

The Use of Microwave Treatment as a Sustainable Technology for the Drying of Metallurgical Sludge.

Materials (Basel)

December 2024

Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland.

The modern metallurgical industry produces approximately 90% of the volume of all produced steel; for this, integrated technology based on fossil materials such as coal, fluxes, and especially iron ore is used. This industry generates large amounts of waste and by-products at almost all stages of production. Alternative iron and steel production technologies based on iron ore, methane, or pure hydrogen are also not waste-free.

View Article and Find Full Text PDF

The objective of the present study was to determine whether the addition of a blend based on the essential oils of cinnamon, oregano, and eucalyptus to the liquid diets of calves would stimulate the immune system combined with anti-inflammatory action, minimize oxidative responses, and alter the intestinal microbiota, consequently enhancing animal growth. Twenty-four male Holstein calves (approximately five days old) were suckled for 60 days, underwent a weaning process, and were followed up until day 75 of the experiment. The calves were divided into control ( = 12) and phytobiotic ( = 12) groups, receiving commercial milk replacer and pelleted concentrate ad libitum.

View Article and Find Full Text PDF

Tumor microenvironment-responsive engineered hybrid nanomedicine for photodynamic-immunotherapy via multi-pronged amplification of reactive oxygen species.

Nat Commun

January 2025

Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.

Reactive oxygen species (ROS) is promising in cancer therapy by accelerating tumor cell death, whose therapeutic efficacy, however, is greatly limited by the hypoxia in the tumor microenvironment (TME) and the antioxidant defense. Amplification of oxidative stress has been successfully employed for tumor therapy, but the interactions between cancer cells and the other factors of TME usually lead to inadequate tumor treatments. To tackle this issue, we develop a pH/redox dual-responsive nanomedicine based on the remodeling of cancer-associated fibroblasts (CAFs) for multi-pronged amplification of ROS (ZnPP@FQOS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!