AI Article Synopsis

  • The study proposes a method to enhance anaerobic fermentation of waste activated sludge using a cation-regulation strategy that removes metal ions and adds sodium.
  • The optimal conditions for this process involve using a cation-exchange resin at a specific dosage followed by sodium treatment, which leads to significant sludge breakdown.
  • The results show high levels of soluble chemical oxygen demand (SCOD) and production of short-chain fatty acids (SCFAs), particularly acetate and propionate, while also achieving a substantial reduction in sludge volume, benefiting waste management and treatment efficiency.

Article Abstract

This study proposed a cation-regulation strategy based on metal ion removal coupled Na-regulation for enhancing anaerobic fermentation of waste activated sludge. The optimal treatment condition was: cation-exchange resin dosage of 1.75 g/g SS for 1-day treatment, followed by Na-enhanced anaerobic fermentation at NaCl concentration of 20 g/L. The CER induced sludge solubilization and the Na-regulation treatment triggered secondary hydrolysis of CER-solubilized sludge, causing remarkable sludge disintegration and extracellular polymeric substance (EPS) disruption. Numerous SCOD of 6588 mg/L (SCOD/TCOD = 40.6%) was released within 2 days, and the short-chain fatty acids (SCFAs) of 439.9 mg COD/g VSS was produced through 4-day anaerobic fermentation. More than 59% of the SCFAs was composed of acetate and propionate. Nitrogen-free organic matters (i.e. SCFAs and carbohydrates) accounted for 77.9% of SCOD, while considerable sludge solid reduction (51.6% of total VSS) was achievable, which was beneficial for fermentative liquid utilization and sludge disposal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.124921DOI Listing

Publication Analysis

Top Keywords

anaerobic fermentation
16
short-chain fatty
8
fatty acids
8
waste activated
8
activated sludge
8
metal ion
8
ion removal
8
removal coupled
8
coupled na-regulation
8
sludge
7

Similar Publications

Purification and characterization of a thermophilic NAD-dependent lactate dehydrogenase from Moorella thermoacetica.

FEBS Open Bio

January 2025

Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.

Oxidation of lactate under anaerobic dark fermentative conditions poses an energetic problem. The redox potential of the lactate/pyruvate couple is too electropositive to reduce the physiological electron carriers NAD(P) or ferredoxin. However, the thermophilic, anaerobic, and acetogenic model organism Moorella thermoacetica can grow on lactate but was suggested to have a NAD-dependent lactate dehydrogenase (LDH), based on enzyme assays in cell-free extract.

View Article and Find Full Text PDF

One-Pot lignin bioconversion to polyhydroxyalkanoates based on hierarchical utilization of heterogeneous compounds.

Bioresour Technol

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, S117585, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), S138602, Singapore. Electronic address:

Pseudomonas putida degraded 35 % of compounds in alkali-pretreated lignin liquor under nitrogen-replete conditions but with low polyhydroxyalkanoates (PHA) production, while limiting nitrogen supplement improved PHA content (PHA/dry cell weight) to 43 % at the expense of decreased lignin degradation of 22 %. Increase of initial cell biomass (0.1-1.

View Article and Find Full Text PDF

, a Gram-negative anaerobic bacterium colonizing the intestinal mucus layer, is regarded as a promising "next-generation probiotic". There is mounting evidence that diabetes and its complications are associated with disorders of abundance. Thus, and its components, including the outer membrane protein Amuc_1100, -derived extracellular vesicles (AmEVs), and the secreted proteins P9 and Amuc_1409, are systematically summarized with respect to mechanisms of action in diabetes mellitus.

View Article and Find Full Text PDF

The Effects of Mixed Inoculum Storage Time on In Vitro Rumen Fermentation Characteristics, Microbial Diversity, and Community Composition.

Animals (Basel)

December 2024

Jiangxi Province Key Laboratory of Animal Nutrition and Feed, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.

This study aimed to investigate the effects of different storage times of the mixed inoculum on in vitro rumen fermentation characteristics, microbial diversity, and community composition. The experiment was divided into five groups, with mixed inoculum composed of fresh rumen fluid and culture medium being stored at 39 °C for 0 h (H0), 12 h (H12), 24 h (H24), 36 h (H36), and 48 h (H48). After 48 h of in vitro fermentation, the fermentation fluid was collected to assess rumen fermentation characteristics and microbial community composition.

View Article and Find Full Text PDF

The global shift towards renewable energy sources highlights the urgent need for sustainable hydrogen production, with photo-fermentative hydrogen evolution (PFHP) emerging as a promising solution. This review addresses the challenges and opportunities in optimizing PFHP, specifically the role of photosynthetic bacteria (PBS) in utilizing sunlight for hydrogen production. We focus on the key factors influencing PFHP, including light intensity, reactor design, substrate selection, carbon-to-nitrogen ratio, metal ions, temperature, pH, charge transfer and genetic engineering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!