Virus-derived small interference RNAs (vsiRNAs) not only suppress virus infection in plants via induction of RNA silencing but also enhance virus infection by regulating host defensive gene expression. However, the underlying mechanisms that control vsiRNA-mediated host immunity or susceptibility remain largely unknown. In this study, we generated several transgenic wheat lines using four artificial microRNA expression vectors carrying vsiRNAs from Wheat yellow mosaic virus (WYMV) RNA1. Laboratory and field tests showed that two transgenic wheat lines expressing amiRNA1 were highly resistant to WYMV infection. Further analyses showed that vsiRNA1 could modulate the expression of a wheat thioredoxin-like gene (TaAAED1), which encodes a negative regulator of reactive oxygen species (ROS) production in the chloroplast. The function of TaAAED1 in ROS scavenging could be suppressed by vsiRNA1 in a dose-dependent manner. Furthermore, transgenic expression of amiRNA1 in wheat resulted in broad-spectrum disease resistance to Chinese wheat mosaic virus, Barley stripe mosaic virus, and Puccinia striiformis f. sp. tritici infection, suggesting that vsiRNA1 is involved in wheat immunity via ROS signaling. Collectively, these findings reveal a previously unidentified mechanism underlying the arms race between viruses and plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molp.2021.03.022 | DOI Listing |
Sci Rep
December 2024
Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.
The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Plant Pathology, Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Budapest, Hungary.
Plant viruses have evolved different viral suppressors of RNA silencing (VSRs) to counteract RNA silencing which is a small RNA-mediated sequence-specific RNA degradation mechanism. Previous studies have already shown that the coat protein (CP) of cucumber mosaic virus (CMV) reduced RNA silencing suppression (RSS) activity of the VSR of CMV, the 2b protein. To demonstrate the universality of this CP-VSR interference, our study included three different viruses: CMV and peanut stunt virus (PSV) from the Bromoviridae, and plum pox virus (PPV) from the Potyviridae family.
View Article and Find Full Text PDFVirology
December 2024
Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
Triticum mosaic virus (TriMV; Poacevirus tritici) is the founding member of the genus Poacevirus within the family Potyviridae. TriMV is one of the components of the wheat streak mosaic disease (WSMD) complex, an economically significant wheat disease in the Great Plains region of the USA. TriMV contains a single-stranded positive-sense RNA genome of 10,266 nts with an unusually long 5'-nontranslated region of 739 nts.
View Article and Find Full Text PDFFunct Integr Genomics
December 2024
Department of Biology, Debre Markos University, Debre Markos, Ethiopia.
The barley stripe mosaic virus (BSMV) uses its genomic RNA components (alpha, beta, and gamma) as an efficient method for studying gene functions. It is a newly developed method that utilizes gene transcript suppression to determine the role of plant genes. BSMV derived from virus induced gene silencing (VIGS) is capable of infecting various key farming crops like barley, wheat, rice, corn, and oats.
View Article and Find Full Text PDFPlant Dis
December 2024
Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China;
Faba bean (Vicia faba L.) is the fourth most cultivated temperate legume (Lyu et al., 2021).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!