Stimulation of mTOR-independent autophagy and mitophagy by rilmenidine exacerbates the phenotype of transgenic TDP-43 mice.

Neurobiol Dis

Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia; Perron Institute for Neurological and Translational Science, Queen Elizabeth Medical Centre, Nedlands, Western Australia 6150, Australia. Electronic address:

Published: July 2021

Autophagy, which mediates the delivery of cytoplasmic substrates to the lysosome for degradation, is essential for maintaining proper cell homeostasis in physiology, ageing, and disease. There is increasing evidence that autophagy is defective in neurodegenerative disorders, including motor neurons affected in amyotrophic lateral sclerosis (ALS). Restoring impaired autophagy in motor neurons may therefore represent a rational approach for ALS. Here, we demonstrate autophagy impairment in spinal cords of mice expressing mutant TDP-43 or co-expressing TDP-43 transgenes. The clinically approved anti-hypertensive drug rilmenidine was used to stimulate mTOR-independent autophagy in double transgenic TDP-43 mice to alleviate impaired autophagy. Although rilmenidine treatment induced robust autophagy in spinal cords, this exacerbated the phenotype of TDP-43 mice, shown by truncated lifespan, accelerated motor neuron loss, and pronounced nuclear TDP-43 clearance. Importantly, rilmenidine significantly promoted mitophagy in spinal cords TDP-43 mice, evidenced by reduced mitochondrial markers and load in spinal motor neurons. These results suggest that autophagy induction accelerates the phenotype of this TDP-43 mouse model of ALS, most likely through excessive mitochondrial clearance in motor neurons. These findings also emphasise the importance of balancing autophagy stimulation with the potential negative consequences of hyperactive mitophagy in ALS and other neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2021.105359DOI Listing

Publication Analysis

Top Keywords

tdp-43 mice
16
motor neurons
16
spinal cords
12
autophagy
10
mtor-independent autophagy
8
tdp-43
8
transgenic tdp-43
8
impaired autophagy
8
phenotype tdp-43
8
mice
5

Similar Publications

Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.

View Article and Find Full Text PDF

Background: Compelling evidence has shown that long non-coding RNAs (lncRNAs) contribute to Alzheimer's disease (AD) pathogenesis including β-amyloid plaque deposition (Aβ) and intracellular neurofibrillary tangles. In this study, we aimed to investigate the critical role of lncRNA Gm20063 in AD.

Method: Six-month-old male APP/PS1 transgenic mice and wild type (WT) C57BL/6 (B6) littermates were obtained from the Nanjing University Animal Model Research Center.

View Article and Find Full Text PDF

Background: Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TDP-43 pathology (FTLD-GRN). Multiple therapeutic strategies are in clinical development to restore PGRN levels in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution.

View Article and Find Full Text PDF

Background: Emerging evidence support the notion that loss of splicing repression by TDP-43, an RNA binding protein that was first implicated in ALS-FTD, underlies their pathogenesis. Previously, we showed that delivery of an AAV9 vector at early postnatal day expressing a fusion protein, termed CTR comprised of the N-terminal region of TDP-43 and an unrelated splicing repressor termed RAVER1 complemented the loss of TDP-43 in mice lacking TDP-43 in spinal motor neurons (ChAT-IRES-Cre;tardbp mice). To translate this potential therapeutic strategy to the clinic, it will be important to demonstrate benefit of such AAV delivery of CTR to motor neurons in adult mice.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.

Background: Glaucoma is characterized by progressive optic nerve degeneration that results in irreversible blindness, and it can be considered a neurodegenerative disorder of both the eye and the brain. Increasing evidence suggest that glaucoma shares some common neurodegenerative pathways with Frontotemporal Lobar Degeneration (FTLD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD) among others. Interestingly, a recent study revealed the presence of abnormal TAR DNA-binding protein 43 (TDP-43) inclusions and aggregates in retinal ganglion cells and other retinal cell types in FTLD-TDP patients; however, the significance of this pathology and its impact on retinal function and optical nerve integrity is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!