This work reports synthesis of a dual-function facile heterojunction and investigation of role of the charge transfer dynamism between individual semiconductor components for superior photocatalytic and electrochemical sensing application. The bio-benevolent and sturdy ZnO/FeO heterojunctions were utilized for visible light facilitated photo-degradation of sulfamethoxazole (SMX) antibiotic and electrochemical sensing of dopamine drug (DA). The fabricated heterojunction were characterized for structural, optical, and magnetic properties. Structural studies revealed the formation of nano heterojunction containing both phases. Magnetic studies confirmed the highly pure magnetic nature of photocatalysts. ZnO/30 wt%FeO heterojunction (S2) shows 95.2% SMX degradation under visible light and high retention of performance under solar light. The scavenging experiments infer that OH radicals are the active species responsible for degradation. A Z-scheme photocatalytic mechanism was predicted for higher performance with protection of high potential VB of ZnO and CB of FeO for high generation of reactive oxygen species. LC-MS was employed to predict a plausible degradation route. The sample modified glassy carbon electrodes (GCE) were used for electrochemical sensing of dopamine via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The S2 junction exhibited 0.18 μM limit of detection with concentration range of 1 μM-50 μM. The stability test was successfully carried out at room temperature for 15 days. In addition, the S2 modified electrodes were spiked in real urine samples and good results were obtained. DPV reveals that S2 modified electrode is best sensor for dopamine sensing among all synthesized heterojunctions. The detection mechanism was also discussed in detail. The in-built metal redox i.e Zn/Zn and Fe/Fe facilitate the Z-scheme transfer, improve the charge transfer capacity and reduce the recombination. This study is beneficial because it reports utilization of popular and well-tested semiconductor metal oxides to form heterojunctions with dual capabilities of environmental detoxification and cost-effective electrochemical detection of biomolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2021.111074DOI Listing

Publication Analysis

Top Keywords

electrochemical sensing
12
photo-degradation sulfamethoxazole
8
charge transfer
8
visible light
8
sensing dopamine
8
electrochemical
5
robust magnetic
4
magnetic zno-feo
4
zno-feo z-scheme
4
z-scheme hetereojunctions
4

Similar Publications

Brain-Computer Interface and Electrochemical Sensor Based on Boron-Nitrogen Co-Doped Graphene-Diamond Microelectrode for EEG and Dopamine Detection.

ACS Sens

January 2025

Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.

The simultaneous detection of electroencephalography (EEG) signals and neurotransmitter levels plays an important role as biomarkers for the assessment and monitoring of emotions and cognition. This paper describes the development of boron and nitrogen codoped graphene-diamond (BNGrD) microelectrodes with a diameter of only 200 μm for sensing EEG signals and dopamine (DA) levels, which have been developed for the first time. The optimized BNGrD microelectrode responded sensitively to both EEG and DA signals, with a signal-to-noise ratio of 9 dB for spontaneous EEG signals and a limit of detection as low as 124 nM for DA.

View Article and Find Full Text PDF

Controlled synthesis of faceted nanoparticles on surfaces without explicit use of ligands has gained attention due to their promising applications in electrocatalysis and chemical sensing. Electrodeposition is a desirable method; however, precise control over their size, spatial distribution, and morphology requires extensive optimization. Here, we report the spatially resolved synthesis of shape-controlled Pt nanoparticles and fast screening of synthesis conditions in scanning electrochemical cell microscopy (SECCM) with pulse potentials.

View Article and Find Full Text PDF

Glycan-Matchmade Multivalent Decoration of Enzyme Labels for Amplified Electrochemical Detection of Glycoproteins.

Anal Chem

January 2025

Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.

Glycoproteins are of significant value to liquid biopsy of human diseases. Herein, we present a universal electrochemical platform for the amplified detection of glycoproteins, taking advantage of the glycan-matchmade multivalent decoration of enzyme labels for the enzymatic signal amplification. Briefly, the glycan-matchmade multivalent decoration involves two steps, i.

View Article and Find Full Text PDF

Sensitive H sensors play key roles in the large-scale and safe applications of H. In this study, we developed novel ternary Pd-loaded SnO@WO core-shell structures by hydrothermal and reduction methods. The compositions of the optimized ternary core-shell structures (Pd-SW-2) are prepared on the basis of the optimal binary core-shell structures (SW-X) according to the sensing performances to H.

View Article and Find Full Text PDF

With enrichment of tetracycline (TC) in ecosystems, its accurate detection has become a major concern. Noble-metal nano-particles have attracted great interest as potential materials for sensing applications because of their remarkable electrical properties and adaptability. Herein, a novel electro-chemical detection technique based on carbon nano-tubes (CNTs) as the support material is developed to detect TC with high precision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!