Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In animal cells, the functions of the microtubule cytoskeleton are coordinated by centriole-based centrosomes via γ-tubulin complexes embedded in the pericentriolar material or PCM. PCM assembly has been best studied in the context of mitosis, where centriolar SPD-2 recruits PLK-1, which in turn phosphorylates key scaffolding components like SPD-5 and CNN to promote expansion of the PCM polymer. To what extent these mechanisms apply to centrosomes in interphase or in differentiated cells remains unclear. Here, we examine a novel type of centrosome found at the ciliary base of C. elegans sensory neurons, which we show plays important roles in neuronal morphogenesis, cellular trafficking, and ciliogenesis. These centrosomes display similar dynamic behavior to canonical, mitotic centrosomes, with a stable PCM scaffold and dynamically localized client proteins. Unusually, however, they are not organized by centrioles, which degenerate early in terminal differentiation. Yet, PCM not only persists but continues to grow with key scaffolding proteins including SPD-5 expressed under control of the RFX transcription factor DAF-19. This assembly occurs in the absence of the mitotic regulators SPD-2, AIR-1 and PLK-1, but requires tethering by PCMD-1, a protein which also plays a role in the initial, interphase recruitment of PCM in early embryos. These results argue for distinct mechanisms for mitotic and non-mitotic PCM assembly, with only the former requiring PLK-1 phosphorylation to drive rapid expansion of the scaffold polymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2021.03.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!