The search for possible biosignature gases in habitable exoplanet atmospheres is accelerating, although actual observations are likely years away. This work adds isoprene, CH, to the roster of biosignature gases. We found that isoprene geochemical formation is highly thermodynamically disfavored and has no known abiotic false positives. The isoprene production rate on Earth rivals that of methane (CH; ∼500 Tg/year). Unlike methane, on Earth isoprene is rapidly destroyed by oxygen-containing radicals. Although isoprene is predominantly produced by deciduous trees, isoprene production is ubiquitous to a diverse array of evolutionary distant organisms, from bacteria to plants and animals-few, if any, volatile secondary metabolites have a larger evolutionary reach. Although non-photochemical sinks of isoprene may exist, such as degradation of isoprene by life or other high deposition rates, destruction of isoprene in an anoxic atmosphere is mainly driven by photochemistry. Motivated by the concept that isoprene might accumulate in anoxic environments, we model the photochemistry and spectroscopic detection of isoprene in habitable temperature, rocky exoplanet anoxic atmospheres with a variety of atmosphere compositions under different host star ultraviolet fluxes. Limited by an assumed 10 ppm instrument noise floor, habitable atmosphere characterization when using James Webb Space Telescope (JWST) is only achievable with a transit signal similar or larger than that for a super-Earth-sized exoplanet transiting an M dwarf star with an H-dominated atmosphere. Unfortunately, isoprene cannot accumulate to detectable abundance without entering a run-away phase, which occurs at a very high production rate, ∼100 times the Earth's production rate. In this run-away scenario, isoprene will accumulate to >100 ppm, and its spectral features are detectable with ∼20 JWST transits. One caveat is that some isoprene spectral features are hard to distinguish from those of methane and also from other hydrocarbons containing the isoprene substructure. Despite these challenges, isoprene is worth adding to the menu of potential biosignature gases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ast.2019.2146 | DOI Listing |
Environ Sci Technol Lett
September 2022
Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States 27599.
2-Methyltetrols and CHO compounds, referred to as "C-alkene triols," are chemical tracers used to estimate isoprene-derived epoxydiol (IEPOX) contributions to atmospheric PM. For nearly two decades, "C-alkene triol" molecular structures and PM mass contributions remain uncertain, and their origin as analytical artifacts is unclear. Thus, we synthesized CHO reactive uptake product candidates (3-methyltetrahydrofuran-2,4-diol and 3-methylenebutane-1,2,4-triol) and investigated their behavior under conventional gas chromatography/electron impact-mass spectrometry (GC/EI-MS) with prior trimethylsilylation and, in parallel, by non-destructive hydrophilic-interaction liquid chromatography coupled with electrospray ionization interfaced to high-resolution quadrupole-time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS).
View Article and Find Full Text PDFAtmos Environ (1994)
February 2023
Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711 USA.
Photochemical smog is a complex mixture of primary and secondary air pollutants including secondary organic aerosols (SOA), ozone and reactive aldehydes which has been linked to increased risk of adverse cardiovascular and pulmonary responses. The components and related health effects of smog are thought to be determined both by the precursor chemicals and reaction conditions. Here we examined the difference between isoprene- (IS-) and toluene- (TS) generated smog in causing cardiopulmonary effects in rats.
View Article and Find Full Text PDFGeosci Model Dev
March 2023
Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
Gas-phase oxidation of isoprene by ozone (O) and the hydroxyl (OH) and nitrate (NO) radicals significantly impacts tropospheric oxidant levels and secondary organic aerosol formation. The most comprehensive and up-to-date chemical mechanism for isoprene oxidation consists of several hundred species and over 800 reactions. Therefore, the computational expense of including the entire mechanism in large-scale atmospheric chemical transport models is usually prohibitive, and most models employ reduced isoprene mechanisms ranging in size from ~ 10 to ~ 200 species.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; China CDC Key Laboratory of Environment and Population Health, Beijing 100021, China. Electronic address:
Cognitive fatigue in specific occupations may present a risk to personal safety. The study aimed to explore the characteristic volatile organic compounds (VOCs) in exhaled breath in response to cognitive fatigue, to provide a scientific basis for the non-invasive exhaled breath diagnostic techniques for cognitive fatigue assessing. Thirty healthy young adults were recruited and assigned to complete two 1.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China. Electronic address:
Biogenic volatile organic compounds (BVOCs) are emitted by urban vegetation and can interact with anthropogenic pollutants to generate secondary organic aerosols (SOA) that are atmospheric pollutants in urban environments. In urban forests, SOA comprise up to 90 % of all fine aerosols (particulate matter smaller than 1 μm [PM]) in the summer. PM can greatly affect urban air quality and public health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!