A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis of Silver- and Strontium-Substituted Hydroxyapatite with Combined Osteogenic and Antibacterial Activities. | LitMetric

Synthesis of Silver- and Strontium-Substituted Hydroxyapatite with Combined Osteogenic and Antibacterial Activities.

Biol Trace Elem Res

Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.

Published: February 2022

Infection in bone transplantation process is attracting considerable attention. The current study synthesizes silver/strontium co-substituted hydroxyapatite (Ag/Sr-HA) nanoparticles with combined osteogenic and antibacterial activities. Different concentrations of silver-substituted hydroxyapatite (Ag-HA) nanoparticles were synthesized by hydrothermal method, and then their physicochemical properties were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), and energy-dispersive X-ray spectroscopy (EDS). Then, Sr was added as secondary element into Ag-HA to improve the biocompatibility of substrate. The antibacterial experiments indicated that Ag-HA had excellent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The effects of prepared samples on cell proliferation and differentiation were evaluated using MC3T3-E1 cells in vitro. The results showed that Sr substitution enhanced cell proliferation and differentiation, upregulated expression of osteogenic genes, and induced mineralization of cells. The substitution of Sr in Ag/Sr-HA nanoparticles can effectively alleviate the negative effects of Ag and enhance the biological activity of HA. Thus, the synthesized Ag/Sr-HA nanoparticles will serve as a potential candidate for application of biomedical implants with excellent osteogenic and antibacterial ability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-021-02697-zDOI Listing

Publication Analysis

Top Keywords

osteogenic antibacterial
12
ag/sr-ha nanoparticles
12
combined osteogenic
8
antibacterial activities
8
cell proliferation
8
proliferation differentiation
8
antibacterial
5
synthesis silver-
4
silver- strontium-substituted
4
strontium-substituted hydroxyapatite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!