Novel electro self-assembled DNA nanospheres as a drug delivery system for atenolol.

Nanotechnology

Biological Advanced Materials, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt.

Published: April 2021

We describe new method for preparing DNA nanospheres for a self-assembled atenolol@DNA (core/shell) drug delivery system. In this paper, we propose the electrochemical transformation of an alkaline polyelectrolyte solution of DNA into DNA nanospheres. We successfully electrosynthesized DNA nanospheres that were stable for at least 2 months at 4 °C. UV-visible spectra of the prepared nanospheres revealed a peak ranging from 372 to 392 nm depending on the DNA concentration and from 361 to 398.3 nm depending on the electrospherization time. This result, confirmed with size distribution curves worked out from transmission electron microscopy (TEM) images, showed that increasing electrospherization time (6, 12 and 24 h) induces an increase in the average size of DNA nanospheres (48, 65.5 and 117 nm, respectively). In addition, the average size of DNA nanospheres becomes larger (37.8, 48 and 76.5 nm) with increasing DNA concentration (0.05, 0.1 and 0.2 wt%, respectively). Also, the affinity of DNA chains for the surrounding solvent molecules changed from favorable to bad with concomitant extreme reduction in the zeta potential from -31 mV to -17 mV. Principally, the attractive and hydrophobic interactions tend to compact the DNA chain into a globule, as confirmed by Fourier transform infrared spectroscopy (FTIR) and TEM. To advance possible applications, we successfully electro self-assembled an atenolol@DNA drug delivery system. Our findings showed that electrospherization as a cost-benefit technique could be effectively employed for sustained drug release. This delivery system achieved a high entrapment efficiency of 68.03 ± 2.7% and a moderate drug-loading efficiency of 3.73%. The FTIR spectra verified the absence of any chemical interaction between the drug and the DNA during the electrospherization process. X-ray diffraction analysis indicated noteworthy lessening in atenolol crystallinity. The present findings could aid the effectiveness of electrospherized DNA for use in various other pharmaceutical and biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abd727DOI Listing

Publication Analysis

Top Keywords

dna nanospheres
24
delivery system
16
dna
13
drug delivery
12
electro self-assembled
8
self-assembled atenolol@dna
8
dna concentration
8
electrospherization time
8
average size
8
size dna
8

Similar Publications

Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO nanosheet, and a mesoporous ZnGaO:Cr, Sn near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS).

View Article and Find Full Text PDF

Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).

View Article and Find Full Text PDF

Sequentially Activated Smart DNA Nanospheres for Photoimmunotherapy and Immune Checkpoint Blockade.

Adv Sci (Weinh)

November 2024

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China.

Due to the inherent immunosuppression and immune evasion of cancer cells, combining photoimmunotherapy with immune checkpoint blockade leverages phototherapy and immune enhancement, overcoming mutual limitations and demonstrating significant anticancer potential. The main challenges include nonspecific accumulation of agents, uncontrolled activation, and drug carrier safety. Smart DNA nanospheres (NS) is developed with targeted delivery and controllable release of photosensitizers and immune agents to achieve effective synergistic therapy and minimize side effects.

View Article and Find Full Text PDF

Multiple and ultrasensitive detection of pathogenic bacteria is critical but remains a challenge. Here, we introduce a digital assay for multiplexed and target DNA amplification-free detection of pathogenic bacteria using botryoidal-like fluorescent polystyrene dots (PS-dots), which were first prepared through the hybridization reaction between primer exchange reaction chains and polystyrene nanospheres that encapsulated polymer dots for signal preamplification. The pathogenic bacteria's DNA was cleavaged by the argonaute (Ago) protein-mediated multiple and precise cleavage reactions, where the obtained target sequences bridged the magnetic beads (MBs) and botryoidal-like PS-dots via a hybridization reaction, and the fluorescent MB-botryoidal PS-dot complexes were utilized as digital probes based on colors and sizes for digital encoding.

View Article and Find Full Text PDF

Background: The new synthesized water-soluble derivatives of C fullerenes are of a great interest to researchers since they can potentially be promising materials for drug delivery, bioimaging, biosonding, and tissue engineering. Surface functionalization of fullerene derivatives changes their chemical and physical characteristics, increasing their solubility and suitability for different biological systems applications, however, any changes in functionalized fullerenes can modulate their cytotoxicity and antioxidant properties. The toxic or protective effect of fullerene derivatives on cells is realized through the activation or inhibition of genes and proteins of key signaling pathways in cells responsible for regulation of cellular reactive oxygen species (ROS) level, proliferation, and apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!