Carbon-based nano-filler in polymeric composites for supercapacitor electrode materials: a review.

Environ Sci Pollut Res Int

School of Chemical and Metallurgical Engineering, Faculty of Engineering and Built Environment, University of the Witwatersrand, Johannesburg, South Africa.

Published: June 2021

The concept of this paper was to explore the comparative advantage of polymer composite in the formation of a critical part of electrodes, separators, and electrolytes. These parts largely determine the overall performance of new evolving supercapacitors (SC) as against many other existing storage devices. Polymer materials are reputed for their low weight and life-cycle flexibility which makes supercapacitors unique in their functions. In this paper, application and classification of SCs were undertaken to take into consideration the peculiarities of polymer composite suitable for each class of SCs identified in this work. Part of the rationale of this review paper was to bridge the existing gap identified in many storage devices using salient properties inherent in light-weight materials. This paper also discussed the potential threats to SCs, which require further research works. It is expected that this paper would assist other researchers in evolving SCs devoid of low cell voltages, lower energy density, and reduction of production cost.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-13589-zDOI Listing

Publication Analysis

Top Keywords

polymer composite
8
storage devices
8
paper
5
carbon-based nano-filler
4
nano-filler polymeric
4
polymeric composites
4
composites supercapacitor
4
supercapacitor electrode
4
electrode materials
4
materials review
4

Similar Publications

Removal of Cr(VI) from aqueous solutions by activated carbon and its composite with PWO: A spectroscopic study to reveal adsorption mechanism.

Heliyon

January 2025

Nuclear Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic.

Molecular scale information is needed to understand ions coordination to mineral surfaces and consequently to accelerate the design of improved adsorbents. The present work reports on the use of two-dimensional correlation Fourier Transform infra-red spectroscopy (2D-COS-FTIR) and hetero 2D-COS-FTIR- X-ray diffraction (XRD) to probe the mechanism of Cr(VI) removal from aqueous solutions by activated carbon (AC) and its composite with PWO (AC-composite). The adsorption data at an initial Cr(VI) concentration of 320 mg L (320 ppm) revealed maximum adsorption capacities of 65 mg g for AC and 73 mg g for AC-composite, corresponding to removal percentages of 83 % and 94 %, respectively.

View Article and Find Full Text PDF

Insights into the electroactive impact of magnetic nanostructures in PVDF composites small-angle neutron scattering.

Nanoscale

January 2025

Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal.

Poly(vinylidene fluoride) (PVDF) is technologically relevant due to its thermal stability; chemical, mechanical and radiation resistance; transparency; biocompatibility; and ease of processing. Several of those applications are related to its high electroactivity, for which the β-phase of the polymer is its most renowned protagonist. In this context, extensive research has been conducted on the crystallization of PVDF in the β-phase, when processed from melt and from solution.

View Article and Find Full Text PDF

Self-assembly processes of 2D Au(I)-S(CH)COOH lamellae.

Nanoscale

January 2025

State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Solving the assembled structure of Au(I)-thiolate linear coordination polymers has been a challenging task as they generally lack good crystallinity. This has prevented the elucidation of their assembly processes at the molecular level. In this paper, selected area electron diffraction (SAED) patterns of two-dimensional (2D) Au(I)-S(CH)COOH (Au(I)-MPA) lamellae are obtained by applying cryogenic transmission electron microscopy.

View Article and Find Full Text PDF

Fluoropolymer-Single Crystal Nanocomposite Based Transducer Fabrication for Bio-Imaging.

Adv Healthc Mater

January 2025

Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, 140306, India.

Fluoropolymer alone, as an alternative to lead-based piezoelectric materials, has shown multiple challenges to develop useful sensors for solving real-world problems such as photoacoustic, ultrasound pulse echo, and other non-destructive testing. This work demonstrates the fabrication of high frequency and wide bandwidth transducers with fluoropolymer and highly polarizing cubic single crystal Barium titanate (BaTiO) ceramic composite for high resolution in-vivo photo-acoustic and ultrasound imaging. For transducer fabrication, a customized bio-compatible nanocomposite sensor film of PVDF-TrFE (Polyvinylidene fluoride trifluoroethylene)/BaTiO (BTO) is synthesized by drop and dry in heating-cum-electro-poling system for advancing polarization, crystallinity, and higher charge generation.

View Article and Find Full Text PDF

Laser ablation propulsion is an important micro-propulsion system for microsatellites. Polymers with carbon added and carbon-based nanomaterial have been demonstrated as propellants with high impulse coupling coefficient (C). Among them, the carbon nanotube film exhibits a low ablation threshold fluence of 25 mJ/cm, which shows its potential for propulsion under low laser fluence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!