Resistance to venetoclax and hypomethylating agents in acute myeloid leukemia.

Cancer Drug Resist

Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.

Published: March 2021

Despite the success of the combination of venetoclax with the hypomethylating agents (HMA) decitabine or azacitidine in inducing remission in older, previously untreated patients with acute myeloid leukemia (AML), resistance - primary or secondary - still constitutes a significant roadblock in the quest to prolong the duration of response. Here we review the proposed and proven mechanisms of resistance to venetoclax monotherapy, HMA monotherapy, and the doublet of venetoclax and HMA for the treatment of AML. We approach the mechanisms of resistance to HMAs and venetoclax in the light of the agents' mechanisms of action. We briefly describe potential therapeutic strategies to circumvent resistance to this promising combination, including alternative scheduling or the addition of other agents to the HMA and venetoclax backbone. Understanding the mechanisms of action and evolving resistance in AML remains a priority in order to maximize the benefit from novel drugs and combinations, identify new therapeutic targets, define potential prognostic markers, and avoid treatment failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011583PMC
http://dx.doi.org/10.20517/cdr.2020.95DOI Listing

Publication Analysis

Top Keywords

resistance venetoclax
8
venetoclax hypomethylating
8
hypomethylating agents
8
acute myeloid
8
myeloid leukemia
8
agents hma
8
mechanisms resistance
8
mechanisms action
8
resistance
6
venetoclax
5

Similar Publications

Oncogenic role of RARG rearrangements in acute myeloid leukemia resembling acute promyelocytic leukemia.

Nat Commun

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Acute myeloid leukemia (AML) featuring retinoic acid receptor-gamma (RARG) rearrangements exhibits morphological features resembling those of acute promyelocytic leukemia but is associated with drug resistance and poor clinical outcomes. However, the mechanisms underlying the role of RARG fusions in leukemogenesis remain elusive. Here, we show that RARG fusions disrupt myeloid differentiation and promote proliferation and self-renewal of hematopoietic stem and progenitor cells (HSPCs) by upregulating BCL2 and ATF3.

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells.

View Article and Find Full Text PDF

Background: CREB binding protein (CREBBP) is a key epigenetic regulator, altered in a fifth of relapsed cases of acute lymphoblastic leukemia (ALL). Selectively targeting epigenetic signaling may be an effective novel therapeutic approach to overcome drug resistance. Anti-tumor effects have previously been demonstrated for GSK-J4, a selective H3K27 histone demethylase inhibitor, in several animal models of cancers.

View Article and Find Full Text PDF

Background: Venetoclax + azacitidine is a frontline treatment for older adult acute myeloid leukemia (AML) patients and a salvage therapy for relapsed/refractory patients who have been treated with intensive chemotherapy. While this is an important treatment option, many patients fail to achieve complete remission and of those that do, majority relapse. Leukemia stem cells (LSCs) are believed to be responsible for AML relapse and can be targeted through oxidative phosphorylation reduction.

View Article and Find Full Text PDF

Multiple myeloma (MM), the second most common hematologic malignancy in the United States, is characterized by repeated cycles of remission and relapse, with increasing resistance to treatment after each line of therapy. Despite the virtually incurable nature of MM, recent therapeutic breakthroughs have fundamentally reshaped its treatment landscape. This review explores evolving care paradigms, spanning from newly diagnosed MM to relapsed or refractory disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!