The complete mitochondrial genome of (Linnaeus, 1758) (Perciformes: Cichlidae) and its phylogenetic placement.

Mitochondrial DNA B Resour

Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Hunan University of Arts and Science, Changde, China.

Published: March 2021

(Linnaeus, 1758), a cichlid species that is naturally distributed in African and Eurasian waters, was introduced in many Asian countries for aquaculture. To date, rare genetic studies focused on this species have hindered our understanding of this species. Here, we reported the complete mitochondrial genome of that was sequenced using next-generation sequencing technology. The resulting mitogenome of was 16,630 in length and comprised 13 protein-coding genes (PCG), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA genes (rRNA), and one control region (D-loop). Phylogenetic analysis indicated that Oreochromini species contained two lineages (I and II) and clustered with rather than other species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971210PMC
http://dx.doi.org/10.1080/23802359.2021.1888327DOI Listing

Publication Analysis

Top Keywords

complete mitochondrial
8
mitochondrial genome
8
linnaeus 1758
8
species
5
genome linnaeus
4
1758 perciformes
4
perciformes cichlidae
4
cichlidae phylogenetic
4
phylogenetic placement
4
placement linnaeus
4

Similar Publications

mtSTAT3 suppresses rheumatoid arthritis by regulating Th17 and synovial fibroblast inflammatory cell death with IL-17-mediated autophagy dysfunction.

Exp Mol Med

January 2025

Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Th17 cells are activated by STAT3 factors in the nucleus, and these factors are correlated with the pathologic progression of rheumatoid arthritis (RA). Recent studies have demonstrated the presence of STAT3 in mitochondria, but its function is unclear. We investigated the novel role of mitochondrial STAT3 (mitoSTAT3) in Th17 cells and fibroblast-like synoviocytes (FLSs) and analyzed the correlation of mitoSTAT3 with RA.

View Article and Find Full Text PDF

Objective: To investigate the effects of Astragalus polysaccharide (APS) on skeletal muscle structure and function in D-galactose (D-gal)-induced C57BL/6J mice.

Methods: Eighteen male C57BL/6J mice of specific pathogen-free (SPF) grade, aged 8 weeks, were selected and divided into three groups: a control group (0.9% saline gavage for 16 weeks), a D-gal group (subcutaneous injection of 200 mg/kg D-galactose in the upper neck region, once daily for 8 weeks), and a D-gal + APS group (subcutaneous injection of 200 mg/kg D-galactose, once daily for 8 weeks, with concurrent administration of 100 mg/kg APS by gavage for 8 weeks).

View Article and Find Full Text PDF

This research aimed to characterize the mitochondrial genome of the Ghoongroo (GH) pig, a notable breed in India, along with its crossbred varieties, to elucidate their matrilineal components, evolutionary history, and implications for conservation. Seven pigs (5 GH, 2 crossbred, namely Rani and Asha) were sequenced for complete mitochondrial genome, while 24 pigs (11 GH, 6 Rani, and 7 Asha) were sequenced for the complete D-loop of the mitochondrial genome. The genome size of these pigs was determined to be 16,690 bp.

View Article and Find Full Text PDF

Complete mitochondrial genome assembly and comparative analysis of Colocasia esculenta.

BMC Plant Biol

January 2025

Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China.

Colocasia esculenta ranks as the fifth most important tuber crop and is known for its high nutritional and medicinal value. However, there is no research on its mitochondrial genome, hindering in-depth exploration of its genomic resources and genetic relationships. Using second- and third-generation sequencing technologies, we assembled and annotated the mitogenome of C.

View Article and Find Full Text PDF

Protocol for mitochondrial variant enrichment from single-cell RNA sequencing using MAESTER.

STAR Protoc

January 2025

Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA. Electronic address:

Single-cell RNA sequencing (scRNA-seq) enables detailed characterization of cell states but often lacks insights into tissue clonal structures. Here, we present a protocol to probe cell states and clonal information simultaneously by enriching mitochondrial DNA (mtDNA) variants from 3'-barcoded full-length cDNA. We describe steps for input library preparation, mtDNA enrichment, PCR product cleanup, and paired-end sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!