Recently, we have reported the isolation and characterization of a putative genomic DNA clone encoding bovine adrenal phenylethanolamine N-methyltransferase (PNMT) (Batter et al., 1988). However, the lack of primary amino-acid sequence data for this enzyme precluded a definitive proof of the authenticity of this clone. To establish identity, the amino acid sequence of several peptides generated by chemical and enzymatic hydrolysis of purified PNMT was compared to that predicted from the nucleotide sequence of the exons of the putative PNMT gene. Bovine adrenomedullary PNMT was purified by ammonium sulfate precipitation, gel filtration, and ion exchange chromatography. Treatment with 70% formic acid cleaved the protein at a single Asp-Pro bond near the N-terminus. The purified protein was also cleaved at a single methionine residue near the C-terminus by treatment with cyanogen bromide. N-terminal amino acid sequence analysis identified 8 and 10 amino acid residues, respectively, following each of the scissile peptide bonds. Four tryptic peptides, generated by complete enzymatic digestion, were isolated by reverse-phase HPLC and subjected to sequence analysis. Combined, the amino acid sequences of these six peptides represent 20% of the PNMT protein. These amino acid sequences matched exactly the sequences predicted from the exons of the putative PNMT genomic clone.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.490190314DOI Listing

Publication Analysis

Top Keywords

amino acid
24
acid sequence
12
acid
8
bovine adrenal
8
adrenal phenylethanolamine
8
phenylethanolamine n-methyltransferase
8
sequence data
8
peptides generated
8
exons putative
8
putative pnmt
8

Similar Publications

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.

View Article and Find Full Text PDF

Metabolic profiles of meconium in preeclamptic and normotensive pregnancies.

Metabolomics

January 2025

Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

Introduction: Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn.

View Article and Find Full Text PDF

Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!