Hybrid coffee cultivars may enhance agroecosystem resilience to climate change.

AoB Plants

Agronomy Department, University of Florida, 1676 McCarty Hall B, PO Box 110500, Gainesville, FL 32611, USA.

Published: April 2021

Anthropogenic climate change is predicted to cause shifts in temperature and precipitation patterns that will be detrimental for global agriculture. Developing comprehensive strategies for building climate resilient agroecosystems is critical for maintaining future crop production. Arabica coffee () is highly sensitive to the quantity and timing of precipitation, so alterations in precipitation patterns that are predicted under climate change are likely to be a major challenge for maintaining coffee agroecosystems. We assessed cultivar selection as a potential component of more resilient coffee agroecosystems by evaluating water stress responses among five Arabica coffee cultivars (clonal hybrids H10 and H1 and seedling lines Catuai 44, Catuai, and Villa Sarchi) using a precipitation reduction experiment in the highlands of Tarrazú, Costa Rica. During the first harvest (eighteen months after planting), plants under the rainout treatment had 211 % greater total fruit weight and over 50 % greater biomass than under the control treatment, potentially due to protection from unusually high rainfall during this period of our experiment. At the second harvest (30 months after planting), after a year of more typical rainfall, plants under rainout still produced 66 % more fruit by weight than under control. The magnitude of the responses varied among cultivars where, at the first harvest, H10 and H1 had approximately 92 % and 81 % greater fruit production and 18 % and 22 % greater biomass, respectively, and at the second harvest H10 had 60 % more fruit production than the overall average. Thus, our findings suggest that the hybrid lines H10 and H1 are more resilient than the other cultivars to the stress of high soil moisture. Overall, our results indicate that stress due to higher than average rainfall could impair coffee plant growth and production, and that cultivar selection is likely to be an important tool for maintaining the viability of coffee production, and the resilience of global agroecosystems more generally, under climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7991896PMC
http://dx.doi.org/10.1093/aobpla/plab010DOI Listing

Publication Analysis

Top Keywords

climate change
16
coffee cultivars
8
precipitation patterns
8
arabica coffee
8
coffee agroecosystems
8
cultivar selection
8
months planting
8
plants rainout
8
fruit weight
8
greater biomass
8

Similar Publications

Climate change impact on green spaces planning in an urban area using a hybrid approach.

Environ Sci Pollut Res Int

January 2025

Department of Geomatics Engineering, Hacettepe University, 06800, Beytepe, Ankara, Türkiye.

This study presents a hybrid methodology for planning green spaces to enhance urban sustainability and livability, evaluating the impacts of climate change on cities. Cities, once accommodating a small population, have become major centers of migration and development since the eighteenth century. Rapid urban growth intensifies infrastructure, environmental, and social challenges.

View Article and Find Full Text PDF

Previous health impact assessments of temperature-related mortality in Europe indicated that the mortality burden attributable to cold is much larger than for heat. Questions remain as to whether climate change can result in a net decrease in temperature-related mortality. In this study, we estimated how climate change could affect future heat-related and cold-related mortality in 854 European urban areas, under several climate, demographic and adaptation scenarios.

View Article and Find Full Text PDF

Allometric equations for estimating above and belowground biomass of Colophospermum mopane in Mozambique.

Sci Rep

January 2025

Department of Forest Engineering, Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, P.O. Box 257, Maputo, Mozambique.

Seasonally dry tropical woodlands are vital for climate change mitigation, yet their full potential in carbon storage remains poorly understood. This is largely due to the lack of species-specific allometric models tailored to these ecosystems. To address this knowledge gap, this study aimed to develop species-specific biomass allometric equations (BAEs) for accurately estimating both above- and below-ground biomass of Colophospermum mopane (J.

View Article and Find Full Text PDF

Assessing the impact of climate change on water-related ecosystem services (ES) in Protected Areas (PAs) is essential for developing soil and water conservation strategies that promote sustainability and restore ES. However, the application of ES research in Protected Area (PA) management remains ambiguous and has notable shortcomings. This study primarily aimed to assess the SDR-InVEST (Sediment Delivery Ratio-Integrated Valuation of Ecosystem Services and Tradeoffs) model for estimating ES, including soil loss, sediment export, and sediment retention, under various climate change scenarios from 1997 to 2100 in the data-scarce region of the Bagh-e-Shadi Forest PA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!