Temperature Effects During a Sublethal Chronic Metal Mixture Exposure on Common Carp ().

Front Physiol

Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Antwerp, Belgium.

Published: March 2021

The aquatic environment is the final sink of various pollutants including metals, which can pose a threat for aquatic organisms. Waterborne metal mixture toxicity might be influenced by environmental parameters such as the temperature. In the present study, common carp were exposed for 27 days to a ternary metal mixture of Cu, Zn, and Cd at two different temperatures, 10 and 20°C. The exposure concentrations represent 10% of the 96 h-LC (concentration lethal for the 50% of the population in 96 h) for each metal (nominal metal concentrations of Cu: 0.08 μM; Cd: 0.02 μM and Zn: 3 μM). Metal bioaccumulation and toxicity as well as changes in the gene expression of enzymes responsible for ionoregulation and induction of defensive responses were investigated. Furthermore the hepatosomatic index and condition factor were measured as crude indication of overall health and energy reserves. The obtained results showed a rapid Cu and Cd increase in the gills at both temperatures. Cadmium accumulation was higher at 20°C compared to 10°C, whereas Cu and Zn accumulation was not, suggesting that at 20°C, fish had more efficient depuration processes for Cu and Zn. Electrolyte (Ca, Mg, Na, and K) levels were analyzed in different tissues (gills, liver, brain, muscle) and in the remaining carcasses. However, no major electrolyte losses were observed. The toxic effect of the trace metal ion mixture on major ion uptake mechanisms may have been compensated by ion uptake from the food. Finally, the metal exposure triggered the upregulation of the metallothionein gene in the gills as defensive response for the organism. These results, show the ability of common carp to cope with these metal levels, at least under the condition used in this experiment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009323PMC
http://dx.doi.org/10.3389/fphys.2021.651584DOI Listing

Publication Analysis

Top Keywords

metal mixture
12
common carp
12
metal
9
ion uptake
8
temperature effects
4
effects sublethal
4
sublethal chronic
4
chronic metal
4
mixture
4
mixture exposure
4

Similar Publications

Accurate Dehydrogenation Enthalpies Dataset for Liquid Organic Hydrogen Carriers.

Sci Data

January 2025

Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.

This contribution presents a comprehensive extension of the QM9 dataset (originally at 133 K molecules) with the calculation of G4MP2 enthalpies for 9,841 molecules, featuring up to nine heavy atoms. We present QM9-LOHC, a (de)hydrogenation dataset of 10,373 reactions, including a minimum of 5.5% weight hydrogen storage capacity in line with the Department of Energy standards for Liquid Organic Hydrogen Carriers (LOHC).

View Article and Find Full Text PDF

This study introduces a novel approach to enhance the antibacterial properties of UIO-66 by incorporating both Thymol and ZnO nanoparticles within its framework which represents a significant advancement like exhibiting a synergistic antibacterial effect, providing a prolonged and controlled release, and mitigating cytotoxicity associated with the release of free ZnO nanoparticles by combining these two antimicrobial agents within a single, well-defined metal-organic framework. UIO-66 frameworks are investigated as carriers for the natural antimicrobial agent, Thymol, and ZnONPs offering a novel drug delivery system for antibacterial applications. Results demonstrated 132, 90, 184, and 223 nm sizes for UIO-66, ZnONPs, UIO-66 encapsulated Thymol, and UIO-66 encapsulated both Thymol and ZnONPs, respectively.

View Article and Find Full Text PDF

Optical Properties of Phenylthiolate-Capped CdS Nanoparticles.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

Using many-body perturbation theory, we study the optical properties of phenylthiolate-capped cadmium sulfide nanoparticles to understand the origin of the experimentally observed blue shift in those properties with decreasing particle size. We show that the absorption spectra predicted by many-body perturbation theory agree well with the experimentally measured spectra. The results of our calculations demonstrate that all low-energy excited states correspond to a mixture of two fundamental types of excitations: intraligand and ligand-to-metal charge-transfer excitations.

View Article and Find Full Text PDF

The nitrogen-rich metal-organic framework (MOF) , featuring a melamine (MA) functional group, enables efficient one-step CH purification and methanol-to-olefins (MTO) product separation. At 298 K, its adsorption capacity follows the order CH > CH > CH > CH. Breakthrough experiments showed that produced pure CH from C mixtures with a productivity of 22.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!