Rearranged during transfection () rearrangements occur in 1% to 2% of lung adenocarcinomas as well as other malignancies and are now established targets for tyrosine kinase inhibitors. We developed three novel fusion-positive (+) patient-derived cancer cell lines, CUTO22 [kinesin 5B ()- fusion], CUTO32 (- fusion), and CUTO42 (echinoderm microtubule-associated protein-like 4- fusion), to study RET signaling and response to therapy. We confirmed each of our cell lines expresses the RET fusion protein and assessed their sensitivity to RET inhibitors. We found that the CUTO22 and CUTO42 cell lines were sensitive to multiple RET inhibitors, whereas the CUTO32 cell line was >10-fold more resistant to three RET inhibitors. We discovered that our + cell lines had differential regulation of the mitogen-activated protein kinase and phosphoinositide 3-kinase/protein kinase B (AKT) pathways. After inhibition of RET, the CUTO42 cells had robust inhibition of phosphorylated AKT (pAKT), whereas CUTO22 and CUTO32 cells had sustained AKT activation. Next, we performed a drug screen, which revealed that the CUTO32 cells were sensitive (<1 nM IC) to inhibition of two cell cycle-regulating proteins, polo-like kinase 1 and Aurora kinase A. Finally, we show that two of these cell lines, CUTO32 and CUTO42, successfully establish xenografted tumors in nude mice. We demonstrated that the RET inhibitor BLU-667 was effective at inhibiting tumor growth in CUTO42 tumors but had a much less profound effect in CUTO32 tumors, consistent with our in vitro experiments. These data highlight the utility of new models to elucidate differences in response to tyrosine kinase inhibitors and downstream signaling regulation. Our cell lines effectively recapitulate the interpatient heterogeneity observed in response to RET inhibitors and reveal opportunities for alternative or combination therapies. SIGNIFICANCE STATEMENT: We have derived and characterized three novel rearranged during transfection (RET) fusion non-small cell lung cancer cell lines and demonstrated that they have differential responses to RET inhibition as well as regulation of downstream signaling, an area that has previously been limited by a lack of diverse cell line modes with endogenous RET fusions. These data offer important insight into regulation of response to RET tyrosine kinase inhibitors and other potential therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11033948 | PMC |
http://dx.doi.org/10.1124/molpharm.120.000207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!